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Abstract

The deep diagonal map Tk acts on planar polygons by connecting the k-th diagonals
and intersecting them successively. The map T2 is the pentagram map, and Tk is a
generalization. We study the action of Tk on two subsets of the so-called twisted poly-
gons, which we term type-α and type-β k-spirals. For k ≥ 2, Tk preserves both types
of k-spirals. In particular, we show that for k = 2 and k = 3, both types of k-spirals
have precompact forward and backward Tk-orbits modulo projective transformations.
We derive a rational formula for T3, which generalizes the y-variables transformation
formula by M. Glick and P. Pylyavskyy. We also present four algebraic invariants of T3.
These special orbits in the moduli space are partitioned into cells of a 3× 3 tic-tac-toe
grid. This establishes the action of Tk on k-spirals as a geometric generalization of T2

on convex polygons.

1 Introduction

1.1 Context and Motivation

Given a polygon P in the real projective plane, let Tk be the map that connects its k-th
diagonals and intersects them successively to form another polygon P ′ whose vertices are
given by the following formula:

P ′
i = PiPi+k ∩ Pi+1Pi+k+1. (1)

Figure 1 demonstrates an example of the action of T2 on a convex heptagon. The map T2
is called the pentagram map, a well-studied discrete dynamical system (see [Sch92; Sch01;
Sch08; OST10]). A well-known result is that T2 preserves convexity.1 The T2-orbit of a
convex polygon sits on a flat torus in the moduli space of projective equivalent convex
polygons. On the other hand, the geometry of the map Tk is less well-behaved. For k ≥ 3,
the Tk images of convex polygons may not even be embedded. See Figure 1 for an example
of T3 taking a convex heptagon to a polygon that is not even embedded.

Previous results of Tk often had an algebraic and combinatorial flavor, motivated by two
branches of studies. The first one was a sequence of works [Sch08; OST10; Sol13; OST13]

1A projective polygon is convex if some projective transformation maps it to a planar convex polygon in
the affine patch
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Figure 1: Left: The iterative images of a convex heptagon under the action of T2. Right: A
convex heptagon whose image under T3 is not even embedded.

that established that the T2 action on the moduli space of projective convex polygons is a
discrete completely integrable system; the second one was M. Glick’s discovery in [Gli11] of
the connection between T2 and cluster algebra. In [Gek+12], M. Gekhtman, M. Shapiro,
S. Tabachnikov, and A. Vainshtein generalized the cluster transformations in [Gli11] to
the map Tk acting on so-called “corrugated polygons,” which are polygonal curves in RPk

satisfying certain coplanarity conditions. [Gek+12] showed that Tk is a discrete integrable
system. There are numerous integrability results for these higher-dimensional analogs. See
[KS13; MB13; MB14; KS16; IK23]. These led to many applications and connections of
Tk to other fields, such as octahedral recurrence [Sch08; FK12], the condensation method
of computing determinants [Sch08; Gli18], cluster algebra [Gli11; Gek+12; GP16; FK12],
Poisson Lie groups [FM16; Izo22a], T -systems [KV15; FK12], Grassmannians [FMB19],
algebraically closed fields [Wei23], Poncelet polygons [Sch07; Sch21; Izo22b; Sch24a], and
integrable partial differential equations [Sch08; OST10; NS21].

The geometric aspects of Tk and other deep diagonal maps on planar polygons remain
underexplored. There are only a few studies on the geometries of Tk that focused on small
k or polygons with many symmetries. See [Sch21; Sch24a]. There is no established general
framework on the type of geometric properties preserved under Tk for k ≥ 3 that is analogous
to convexity under T2. Even less is known for geometric objects that have precompact orbits
under Tk.

The most relevant result to this endeavor is the discovery of k-birds under the map ∆k

in [Sch24b]. A k-bird P is a planar n-gon with n > 3k, such that there exists a path P (t)

connecting P to the regular n-gon where the four lines

P
(t)
i P

(t)
i−k−1, P

(t)
i P

(t)
i−k, P

(t)
i P

(t)
i+k, P

(t)
i P

(t)
i+k+1

are distinct for all i = 1, . . . , n and t ∈ I. The map ∆k connects the (k+1)-th diagonal of a
polygon and intersects the diagonals that are k clicks apart. See Figure 2 for the action of
∆2 on 2-birds. In [Sch24b], R. Schwartz showed that the k-birds are invariant under both
∆k and ∆−1

k . Experimentally, the k-birds seem to have toroidal orbits under ∆k, which
highly resembles the orbit of convex n-gons under T2. Schwartz also showed that the k-birds
have precompact forward ∆k-orbits modulo affine transformations—a property satisfied by
convex n-gons under T2.
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Figure 2: Action of ∆2 on two heptagons that are 2-birds.

This paper has two main results. The first one is the discovery of two classes of geometric
objects called type-α and type-β k-spirals that are preserved under Tk for all k ≥ 2. These
two classes of objects are subsets of twisted polygons : bi-infinite sequences P : Z → RP2 such
that no three consecutive points are collinear, and Pi+n = ϕ(Pi) for some fixed projective
transformation ϕ called themonodromy. The moduli space of projective equivalent twisted n-
gons is conventionally denoted by Pn. The type-α and type-β k-spirals are the first discovered
classes of geometric constructions of Tk that generalize the pentagram map, which provides
crucial evidence for a more general understanding of geometrically preserved classes under
Tk.

The second result is the precompactness of both forward and backward Tk-orbits of type-
α and type-β k-spirals modulo projective transformations for k = 2 and s3, a key property
satisfied by convex polygons under the pentagram map discovered by Schwartz in [Sch92].
We first examine the action of T3 on type-α and type-β 3-spirals. We show that one can
characterize type-α and type-β 3-spirals via linear constraints on the corner invariants. We
also derive a birational formula of T3 for the corner invariants, which is a generalization of the
combinatorial formulas developed by [GP16]. Then, we present four global invariants under
T3, which we use to prove the precompactness of T3-orbits modulo. The birational formula for
T3 could be applied to other settings such as the action of T3 on Poncelet polygons [Sch24a]
or discovering T3-compatible Poisson structures on Pn that generalizes the one in [Gek+12]
for corrugated polygons. For the case k = 2, we show that there exists no type-α 2-spirals
and that the type-β 2-spirals are distinct from closed convex polygons. We use the Casimir
functions of the T2-invariant Poisson structure developed in [Sch08] and [OST10] to show
that type-β 2-spirals have precompact T2-orbits modulo projective transformations.

1.2 The k-Spirals under the Map Tk

Here we describe the geometric picture of a k-spiral. For the formal definition, see §3.1.
Geometrically, [P ] ∈ Pn is a k-spiral if for all N ∈ Z, we can find a representative P such
that {Pi}i≥N lies on the affine patch, and the triangles (Pi, Pi+1, Pi+2) and (Pi, Pi+1, Pi+k)
have positive orientation for all i ≥ N . We call P an N-representative of [P ].

We are mainly interested in two types of k-spirals, which we term type-α and type-β
(although there certainly exist many more types of spirals, we only consider these two types
here). They are k-spirals with additional constraints on the arrangement of the four points
Pi, Pi+1, Pi+k, Pi+k+1. For type-α spirals, we require Pi+k to be contained in the interior of the
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Figure 3: A gallery of 5-spirals. Left: Sα
5,3. Middle: Sβ

5,3. Right: Sβ
5,20. The red-shaded

triangles indicate the defining orientations and containment relations of type-α and type-β
k-spirals..

triangle (Pi, Pi+1, Pi+k+1). For type-β spirals, Pi+k+1 needs to be contained in the interior
of (Pi, Pi+1, Pi+k). We say P is a type-α or type-β N-representative. A class of twisted
polygons [P ] is a type-α k-spiral (resp. β) iff it admits a type-α (resp. β) N -representative
for all N ∈ Z. Let Sα

k,n and Sβ
k,n denote the space of type-α and type-β k-spirals modulo

projective equivalence. We will see in §3.1 that they are both open in Pn and hence have
dimension 2n. Figure 3 illustrates three examples of representatives of Sα

5,n for n = 3, and
20.

It turns out that Sα
k,n and Sβ

k,n are invariant under both Tk and T−1
k . Figure 4 shows the

inward half of a representative P of [P ] ∈ Sβ
5,3, with the red arc representing P ′ = T5(P ). On

the right we have five polygonal arcs by joining vertices of P that are 5 clicks apart. We call
them the transversals of P . One way to distinguish type-α and type-β spirals is by looking
at the orientations of transversals. The transversals of type-α spirals are counterclockwise,
whereas those of type-β are clockwise (See Figure 11). In §3, we use the orientations of these
transversals to prove the following main theorem.

Theorem 1.1. For all n ≥ 2 and k ≥ 2, we have Tk(Sα
k,n) = Sα

k,n. The same is true for
type-β.

P

P ′

P

Figure 4: Left: T5 acting on a representative P of [P ] ∈ Sβ
5,3. Right: Transversals of P .

A key property satisfied by convex polygons under the pentagram map is that the forward
and backward orbits of any convex polygon under the pentagrammap are precompact modulo
projective tranformations. See [Sch92, Lemma 3.2]. Experimental results suggest that the k-
birds also have precompact ∆k-orbits. In [Sch24b, Conjecture 8.2] Schwartz conjectured that
the k-birds have precompact forward ∆k-orbits modulo affine transformations. We observed
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experimentally that Sα
k,n and Sβ

k,n behave analogously under Tk.

Conjecture 1.2. For n ≥ 2 and k ≥ 2, the forward and backward Tk-orbit of any [P ] ∈ Sα
3,n

is precompact in Pn. The same holds for type-β.

In §6 and §7, we prove Conjecture 1.2 for k = 2 and k = 3.

1.3 Tic-Tac-Toe Partition and Precompact T3 Orbits

Our main focus will be the case k = 3, which we prove in §6.2.

Theorem 1.3. For n ≥ 2, the forward and backward T3-orbit of any [P ] ∈ Sα
3,n is precompact

in Pn. The same holds for type-β.

We discovered many properties of the two types of k-spirals and the map T3 along our way
to prove Theorem 1.3. One major discovery is that the sets Sα

3,n and Sβ
3,n fit well with a local

parameterization of Pn → R2n introduced by [Sch92] called corner invariants (See §2.4). The
invariant sets of Pn under T3 are partitioned by linear boundaries in the parameter space.
The boundary lines give a grid pattern that resembles the board of the game “tic-tac-toe.”
Each of the four “side-squares” is invariant under T3.

Sn(J,K)

Sn(K, J)

Sn(J, I)

Sn(I, J)

0 1

1

0

Figure 5: The partition of R2 into a 3× 3 grid, and the four side-squares of our interest.

To construct the tic-tac-toe board, consider the three intervals I, J,K of R given by
I = (−∞, 0), J = (0, 1), K = (1,∞). The squares are of the form I × I, I × J , I × K,
J × I, etc.. We mark the four side-squares Sn(I, J), Sn(J, I), Sn(K, J), Sn(J,K). See Figure
5 for a visualization of the tic-tac-toe grid. Given [P ] ∈ Pn, we say [P ] ∈ Sn(I, J) if all even
corner invariants of [P ] are in I, and all odd ones are in J . This means if we plot all n pairs
of corner invariants (x2i, x2i+1) onto R2, we would see n points lying in I × J . The other
three side squares are defined analogously.

Figure 6 shows vertices of a representative P of [P ] ∈ S4(K, J) and the image P ′ = T3(P ).
On the right, we have the projection of the first 211 iterations of the orbit of P under T3.
Each point corresponds to P

(m)
3 after normalizing (P

(m)
−2 , P

(m)
−1 , P

(m)
0 , P

(m)
1 ) to the unit square
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Figure 6: Left: T3 acting on a representative of [P ] ∈ S4(K,J). Right: The orbit of P
(m)
3 in

A2 by fixing P−2 = (0, 0), P−1 = (1, 0), P0 = (1, 1), P1 = (0, 1).

(here P (m) = Tm
3 (P )). We speculate that the orbit lies on a flat torus, where the map T3

acts as a translation on the flat metric.

Twisted polygons that are assigned to these squares have geometric properties. For
example, the closed convex polygons always lie in the center square; two of the side-squares
are Sα

3,n and Sβ
3,n; the other two side-squares are obtained by reverting the indexing of vertices

of these two types of k-spirals. These facts will be proved in §4.

The proof of Theorem 1.3 is algebraic. In §5 I show that T3 is a birational map on the
corner invariants, which generalizes a direct application of [GP16, Theorem 1.6]. For the
explicit formulas, see Equation (19). In §6, I derive four algebraic invariants of T3, which
allow me to show boundedness of the corner invariants of the T3-orbits, thereby proving
Theorem 1.3. This approach is reminiscent of Schwartz’s second proof of precompactness of
T2-orbits of convex polygons in [Sch01, Section 3B & 3C].

1.4 The Type-β 2-Spirals and Its Precompact T2 Orbits

We now proceed to the case k = 2, where the map T2 is the classical pentagram map. In
§3.1 we show that there exist no type-α 2-spirals (so Conjecture 1.2 is vacuously true for
type-α 2-spirals). On the other hand, type-β 2-spirals are nontrivial geometric constructions
that are distinct from convex polygons. In §7.1, we show that the corner invariants of type-β
2-spirals are also partitioned by linear boundaries, and in particular Sα

3,n ⊂ Sβ
2,n.

We point out that the type-β 2-spirals are not related to the pentagram spirals in [Sch13].
The latter requires P to be a relabeling of Tm

2 (P ) for some positive integer m.

In §7.2, we use the Casimir functions of the T2-invariant Poisson structure on Pn from
[Sch08] and [OST10] to prove Conjecture 1.2 for k = 2.

Theorem 1.4. For n ≥ 2, the forward and backward T2-orbit of any [P ] ∈ Sβ
2,n is precompact

in Pn.
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1.5 Obstacles for k > 3 and Future Directions

Our algebraic method of proving Theorem 1.3 and 1.4 requires a complete characterization
of the corner invariants of Sα

k,n and Sβ
k,n and enough algebraic invariants of Tk that uniformly

bounds the corner invariants away from the boundaries of Sα
k,n and Sβ

k,n. For k > 3, one runs
into obstacles for both endeavors. First, the corner invariants seem to be not partitioned
by linear boundaries for k > 3, which makes it difficult to analyze the boundaries of the
corner invariants of Sα

k,n and Sβ
k,n. Next, the map Tk for the corner invariants seems not

birational from computer algebra. This makes it difficult to algebraically characterize the
corner invariants.

One future direction is to look at the cross-ratio of different combinations of points other
than the ones involved in the definition of corner invariants. In §8 we present a conjecture
on a potential algebraic invariant of Tk that is related to the y-variables of a Y -pin from
[GP16], which corresponds to the map Tk as in Equation (1).

Another direction is to analyze the two types of k-spirals geometrically. There are yet
many open problems on the geometry of the two types of k-spirals that could hint at the be-
havior of their Tk-orbits. For open problems, see the end of §3.1. Answering these geometric
problems may provide a new approach to tackle Conjecture 1.2.

1.6 Accompanying Program

I wrote a web-based program to visualize the orbits of twisted polygons under Tk. Readers
can access it from the following link:

https://zzou9.github.io/pentagram-map/spiral.html

When reaching the website, you will see a representative of a twisted polygon displayed in
the middle of the screen (the default one is a square). You can click on the title “Pentagram
Map Simulator” for instructions on how to use the program. I discovered most of the results
by computer experiments using this program. The paper contains rigorous proofs of the
beautiful pictures I observed from it.
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of deep diagonal maps, providing extensive insights throughout the project, and offering
guidance during the writing process. I would also like to thank Anton Izosimov and Sergei
Tabachnikov for their insightful discussions on the tic-tac-toe partition.
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2 Background

2.1 Projective Geometry

The real projective plane RP2 is the space of 1-dimensional subspaces of R3. Points of RP2

are lines in R3 that go through the origin. We say that [x : y : z] is a homogeneous coordinate
of V ∈ RP2 if the vector Ṽ = (x, y, z) is a representative of V . Given two distinct points
V1, V2 ∈ RP2, the line l = V1V2 connecting V1 and V2 is the 2-dimensional hyperplane spanned
by the two 1-dimensional subspaces. Let l1, l2 be two lines in RP2. The point of intersection
l1 ∩ l2 is the 1-dimensional line given by the intersection of the two 2-dimensional subspaces.
In RP2, there exists a unique line connecting each pair of distinct points and a unique point
of intersection given two distinct lines. We call a collection of points V1, V2, . . . , Vn ∈ RP2 in
general position if no three of them are collinear.

The affine patch A2 consists of points in RP2 with homogeneous coordinate [x : y : 1].
We call this canonical choice of coordinate (x, y, 1) the affine coordinate of a point V ∈ A2.
There is a diffeomorphism Φ : R2 → A2 given by Φ(x, y) = [x : y : 1]. We often identify A2

as a copy of R2 in RP2. The line RP2 − A2 is called the line at infinity.

A map ϕ : RP2 → RP2 is a projective transformation if it maps points to points and lines
to lines and is bijective. Algebraically, the group of projective transformations is PGL3(R) =
GL3(R)/R∗I, where we are modding by the subgroup R∗I = {λI : λ ∈ R∗} and I is the 3×3
identity matrix. We state a classical result regarding projective transformations below with
its proof omitted.

Theorem 2.1. Given two 4-tuples of points (V1, V2, V3, V4) and (W1,W2,W3,W4) in RP2,
both in general position, there exists a unique ϕ ∈ PGL3(R) such that ϕ(Vi) = Wi.

The group of affine transformations Aff2(R) on A2 is the subgroup of projective transfor-
mations that fixes the line at infinity. It is isomorphic to a semidirect product of GL2(R) and
R2. Elements of Aff2(R) can be uniquely expressed as a tuple (M ′, v) where M ′ ∈ GL2(R)
and v ∈ R2. Let Aff+

2 (R) denote the subgroup of Aff+
2 (R) where (M ′, v) ∈ Aff+

2 (R) iff
det(M ′) > 0. These are orientation-preserving affine transformations.

2.2 Orientation of Affine Triangles

Given an ordered 3-tuple (V1, V2, V3) of points in R2 or A2, let int(V1, V2, V3) denote the
interior of the affine triangle with vertices V1, V2, V3. There is a canonical way to define the
orientation of an ordered 3-tuple. Let Ṽi be the affine coordinate of Vi. We consider the
signed area O(V1, V2, V3) of the oriented triangle, which can be computed as

O(V1, V2, V3) = det(Ṽ1, Ṽ2, Ṽ3). (2)

The determinant is evaluated on the 3×3 matrix with column vectors Ṽi. We say an ordered
3-tuple (V1, V2, V3) is positive if O(V1, V2, V3) > 0. Figure 7 shows an example of a positive
3-tuple.
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V1

V2

V3

Ṽ1

Ṽ2

Ṽ3

A2

Figure 7: A positive 3-tuple of affine points (V1, V2, V3).

Here is another way to compute O using the R2 coordinates of V1, V2, V3:

O(V1, V2, V3) = det(V1, V2) + det(V2, V3) + det(V3, V1)

= det(Vi − Vi−1, Vi+1 − Vi) for i = 1, 2, 3
(3)

where the determinant is evaluated on the 2× 2 matrix.

O interacts with the action of Aff+
2 (R) and the symmetric group S3 on planar/affine

triangles in the following way: Given M ∈ Aff+
2 (R), let V ′

i = M(Vi). One can show
that (V1, V2, V3) is positive iff (V ′

1 , V
′
2 , V

′
3) is positive. On the other hand, for all σ ∈ S3,

O(Vσ(1), Vσ(2), Vσ(3)) = sgn(σ)O(V1, V2, V3), so O(Vσ(1), Vσ(2), Vσ(3)) = O(V1, V2, V3) when σ is
a 3-cycle.

Below are useful equivalence conditions for the positivity of (V1, V2, V3). The proof is
elementary, so we will omit it.

Proposition 2.2. Given V1, V2, V3 ∈ R2 in general position, and W ∈ int(V1, V2, V3), the
followings are equivalent:

1. (V1, V2, V3) is positive.

2. (Vi, Vi+1,W ) is positive for some i ∈ {1, 2, 3}.

3. (Vi, Vi+1,W ) is positive for all i ∈ {1, 2, 3}.

4. det(Vi − Vi−1, Vi+1 −W ) > 0 for some i ∈ {1, 2, 3}.

5. det(Vi − Vi−1, Vi+1 −W ) > 0 for all i ∈ {1, 2, 3}.

2.3 The Cross-Ratio

The cross-ratio is used to construct a projective-invariant parametrization of the k-spirals.
There are multiple ways to define the cross-ratio of four collinear points on the projective
plane, each using its own permutation of the points. We follow the convention used in
[Sch92]. Given four collinear points A,B,C,D on a line ω ⊂ RP2, we choose a projective
transformation ψ that maps ω to the x-axis of A2. Let a, b, c, d be the x-coordinates of ψ(A),
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ψ(B), ψ(C), ψ(D). We define the cross-ratio to be the following quantity:

χ(A,B,C,D) :=
(a− b)(c− d)

(a− c)(b− d)
. (4)

If A lies on the line at infinity, we let χ(A,B,C,D) = c−d
b−d

. One can check that given any
ϕ ∈ PGL3(R),

χ(A,B,C,D) = χ(ϕ(A), ϕ(B), ϕ(C), ϕ(D)).

We also define the cross-ratio for four projective lines. Let l,m, n, k be four lines intersect-
ing at a common point O. Normalize with a projective transformation so that l,m, n, k ⊂ A2

with slopes sl, sm, sn, sk. We define

χ(l,m, n, k) =
(sl − sm)(sn − sk)

(sl − sn)(sm − sk)
(5)

with χ(l,m, n, k) = sn−sk
sm−sk

if sl = ∞.

If ω is a line that does not go through O and intersects l,m, n, k at A,B,C,D respectively,
we have

χ(l,m, n, k) = χ(A,B,C,D). (6)

See Figure 8 for the configuration. The proof is elementary, so we will omit it.

ω

l

m

n

k

A

B

C

D

O

Figure 8: The configuration in Equation (6).

2.4 Twisted Polygons, Corner Invariants

Introduced in [Sch08], a twisted n-gon is a bi-infinite sequence P : Z → RP2, along with
a projective transformation M ∈ PGL3(R) called the monodromy, such that every three
consecutive points of P are in general position, and Pi+n = M(Pi) for all i ∈ Z. When M
is the identity, we get an ordinary closed n-gon. Two twisted n-gons P,Q are equivalent if
there exists ϕ ∈ PGL3(R) such that ϕ(Pi) = Qi for all i ∈ Z. The two monodromies Mp

and Mq satisfy Mq = ϕMpϕ
−1. Let Pn denote the space of twisted n-gons modulo projective

equivalence.
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The cross-ratio allows us to parameterize Pn with coordinates in R2n. Given a twisted n-
gon P , the corner invariants of P is a coordinate system x0(P ), . . . , x2n−1(P ) given by{

x2i(P ) = χ(Pi−2, Pi−1, Pi−2Pi−1 ∩ PiPi+1, Pi−2Pi−1 ∩ Pi+1Pi+2);

x2i+1(P ) = χ(Pi+2, Pi+1, Pi+2Pi+1 ∩ PiPi−1, Pi+2Pi+1 ∩ Pi−1Pi−2).
(7)

Pi

Pi+1

Pi+2

Pi−1 Pi−2

Pi

Pi+1

Pi+2

Pi−1 Pi−2O A
l1,2 l1,0 l1,−1 l1,−2

Figure 9: Left: The corner invariants x2i(P ) = χ(Pi−2, Pi−1, A,O) computed using Equation
(7). Right: x2i(P ) = χ(l1,−2, l1,−1, l1,0, l1,2) computed using Equation (8).

See the left side of Figure 9 for a geometric interpretation of the corner invariants. Let
la,b = Pi+aPi+b. By Equation (5), the corner invariants can be computed by{

x2i(P ) = χ(l1,−2, l1,−1, l1,0, l1,2);

x2i+1(P ) = χ(l−1,2, l−1,1, l−1,0, l−1,−2).
(8)

See the right side of Figure 9 for the line configurations.

Since χ is invariant under projective transformations, for all j we have xj(P ) = xj+2n(P ),
so a 2n-tuple of corner invariants is enough to fully determine the projective equivalence
class of a twisted n-gon. Without loss of generality, we use xj(P ) to denote the corner
invariants of [P ] ∈ Pn without adding square brackets around P . To obtain the corner
invariants of [P ] ∈ Pn, one can simply choose an arbitrary representative P and compute
its corner invariants. [Sch08, Equation (19) & (20)] showed that one can also revert the
process and obtain a representative twisted polygon of the equivalence class given its corner
invariants.

3 The Spirals and Tk-Orbit Invariance

In this section, we explore the geometric properties of type-α and type-β k-spirals and prove
Theorem 1.1. In §3.1, we give rigorous definitions of the two types of k-spirals and discuss
their geometric properties. In §3.2, we introduce a construct associated to the two types of
k-spirals called the transversals. In §3.3 and §3.4, we prove Theorem 1.1 using geometric
properties of the transversals.
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3.1 The Geometry of k-Spirals

Here we give the formal definition of a k-spiral and its two subsets called type-α and type-β.
We then explore their geometric properties and present some open problems.

Definition 3.1. Given integers k ≥ 2, n ≥ 2, we say that [P ] ∈ Pn is a k-spiral if for all
N ∈ Z, there exists a representative P that satisfies the following: For all i ≥ N , Pi ∈ A2,
(Pi, Pi+1, Pi+2) is positive, and (Pi, Pi+1, Pi+k) is positive. Saying that [P ] is a k-spiral means
that [P ] admits an N -representative for all N ∈ Z.

Remark 3.2. The idea of considering an N -representative for each N ∈ Z is new to the
literature and may at first seem superfluous. Readers will see in §4 that this condition is
natural when we examine the corner invariants of the two types of k-spirals. See the end of
this section for open problems related to the geometry of N -representatives.

In practice, since [P ] is a twisted n-gon, it suffices to find a single N0-representative P0

for some N0 ∈ Z. One can then obtain other N -representatives for N < N0 by applying the
m-th power of the monodromy of [P ] to P0, where m > N0−N

k
+ 1.

Definition 3.3. A k-spiral [P ] ∈ Pn is of type-α or type-β if for all N ∈ Z, it has an
N -representative P that satisfies the following conditions:

• [P ] is of type-α if Pi+k ∈ int(Pi, Pi+1, Pi+k+1) for all i ≥ N ;

• [P ] is of type-β if Pi+k+1 ∈ int(Pi, Pi+1, Pi+k) for all i ≥ N .

Figure 10: Left: The inward half of a 0-representative P of a type-α 6-spiral. The red
triangle is joined by (Pi, Pi+1, Pi+k+1), which is positive by Proposition 3.4 and contains Pi+k

in its interior. Right: The inward half of a 0-representative P of a type-β 6-spiral. The cyan
triangle is joined by (Pi, Pi+1, Pi+k), which is positive and contains Pi+k+1 in its interior.

See Figure 10 for 0-representatives of type-α and type-β 6-spirals. For the type-α k-spirals,
we show that positivity of (Pi, Pi+1, Pi+k) is equivalent to positivity of (Pi, Pi+1, Pi+k+1). The
latter condition turns out to be more convenient for showing Tk invariance.

Proposition 3.4. [P ] ∈ Pn is a type-α k-spiral if and only if for all N ∈ Z, there exists
a representative P that satisfies the following: for all i ≥ N , Pi ∈ A2, (Pi, Pi+1, Pi+2) is
positive, (Pi, Pi+1, Pi+k+1) is positive, and Pi+k ∈ int(Pi, Pi+1, Pi+k+1).

Proof. Since Pi+k ∈ int(Pi, Pi+1, Pi+k+1), we see that int(Pi, Pi+1, Pi+k+1) is nonempty, so the
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three points Pi, Pi+1, Pi+k+1 are in general position. It then follows from Proposition 2.2
that (Pi, Pi+1, Pi+k) is positive iff (Pi, Pi+1, Pi+k+1) is positive.

Corollary 3.5. There exists no type-α 2-spirals.

Proof. It suffices to show that there exists no configuration of four points A,B,C,D ∈ A2

such that (A,B,D), (B,C,D) are both positive and C ∈ int(A,B,D). If (A,B,D) is positive
and C ∈ int(A,B,D), then Proposition 2.2 implies (B,D,C) is positive, but that contradicts
(B,C,D) positive because O(B,C,D) = −O(B,D,C).

On the other hand, type-β 2-spirals do exist. Geometrically, their N -representatives look
like triangular spirals. See §7 for a more thorough discussion on type-β 2-spirals.

Remark 3.6. One may attempt to define the two types of k-spirals on bi-infinite sequences
of points in RP2 with no periodicity constraints. The results in this section hold true for
this more general definition. We restrict our attention to twisted polygons because it’s a
finite-dimensional space, which allows us to more easily keep track of the Tk-orbits.

We now proceed to discuss some geometric properties of type-α and type-β k-spirals.
A twisted polygon P is called k-nice if the four points Pi, Pi+1.Pi+k, Pi+k+1 are in general
position for all i ∈ Z. The k-nice condition is projective invariant. Let Pk,n denote the space
of k-nice twisted n-gons modulo projective equivalence.

Proposition 3.7. For all k ≥ 2, Pk,n is open in Pn, so it has dimension 2n.

Proof. The condition that four points Pi, Pi+1, Pi+k, Pi+k+1 are in general position remains
true if we perturb one of the points in a small enough neighborhood of RP2. The dimension
of Pk,n comes from the fact that Pn has dimension 2n, which is shown in [OST10, Lemma
2.2].

Proposition 3.8. Both type-α and type-β k-spirals are k-nice.

Proof. We give a proof to the type-α case. The type-β case is analogous, so we will omit
it. Given a type-α k-spiral [P ] and an integer i ∈ Z, let P be an i-representative of [P ].
Since (Pi, Pi+1, Pi+k+1) is positive, these three points cannot be collinear. Also, since Pi+k ∈
int(Pi, Pi+1, Pi+k+1), Pi+k does not lie in any of the lines joined by two of the three vertices
Pi, Pi+1, Pi+k+1. This shows that Pi, Pi+1, Pi+k, Pi+k+1 are in general position.

As stated in §1.2, we let Sα
k,n and Sβ

k,n denote the space of type-α and type-β k-spirals
(By Corollary 3.5, Sα

2,n = ∅ for all n ≥ 2 ).

Proposition 3.9. Both Sα
k,n and Sβ

k,n are open in Pk,n, so they both have dimension 2n.

Proof. The positivity conditions of (Pi, Pi+1, Pi+2) and (Pi, Pi+1, Pi+k) are open conditions
from continuity of the determinant function. The condition Pi+k ∈ int(Pi, Pi+1, Pi+k+1) for
type-α (or Pi+k+1 ∈ int(Pi, Pi+1, Pi+k) for type-β) is equivalent to the positivity of certain
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determinants by Proposition 2.2, so it’s also an open condition. Finally, Sα
k,n ⊂ Pk,n and

Sβ
k,n ⊂ Pk,n follows from Proposition 3.8.

A twisted polygon P is closed if there exists some positive integer n such that Pi+n = Pi,
or [P ] ∈ Pn with identity monodromy. We show that neither type-α nor type-β k-spirals are
closed.

Proposition 3.10. For all k ≥ 2 and n ≥ 2, if [P ] ∈ Sα
k,n, then [P ] is not closed. The same

holds for Sβ
k,n.

Proof. Given any closed n-gon P on A2, let C be the convex hull of the vertices of P . Since
P has finitely many vertices, there exists a vertex Pi such that Pi ̸∈ int(C). Then, since
int(Pi−k, Pi−k+1, Pi+1) ⊂ int(C), we must have Pi ̸∈ int(Pi−k, Pi−k+1, Pi+1). It follows that P
is not an N -representative of type-α k-spiral for any N or k. The proof for type-β is similar,
so we omit it.

The two types of k-spirals seem to possess rich geometric properties. We will present
some open problems. In the discussion below, [P ] denotes a type-α or type-β k-spiral.

Problem 3.11. For all N ∈ Z, is it always possible to find N -representatives P such that
for all j > i+ 1, (Pi, Pi+1, Pj) is positive (in other words, Pj always lies on the same side of
the line PiPi+1)?

Problem 3.12. Let P be an arbitrary representative of [P ]. Is there a minimal N ∈ Z such
that P is an N -representative on some affine patch of RP2? Does there exist P that is an
N -representative for all N ∈ Z?

Problem 3.13. Given an N -representative P , does Pi converge to a point in A2 as i→ ∞?

3.2 Transversals of the Spirals

In this section, we prove our remark in §1.2 that transversals for type-α spirals are oriented
counterclockwise, whereas transversals for type-β are oriented clockwise. Recall that the
transversals of an N -representative P of a k-spiral are k polygonal arcs joined by vertices
Pi, Pi+k, Pi+2k, . . . for i = N, . . . , N + k − 1. See Figure 11 for one of the k transversals of
the two representatives from Figure 10.

Figure 11: Transversals of two representatives from Figure 10.
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Lemma 3.14. Given O,A,B,C,D ∈ A2 (See Figure 12) such that (A,O,B), (A,O,D),
(B,O,C), (C,O,D) are all positive. Then, (A,O,C) is positive iff (B,O,D) is positive.

Proof. For the forward direction, normalize with Aff+
2 (R) so that O = (0, 0) and A = (−1, 0).

Let B = (xb, yb), C = (xc, yc), and D = (xd, yd). Since (A,O,B) is positive, Equation (3)
gives us

O(A,O,B) = det(O − A,B −O) = det(−A,B) = yb > 0.

Similarly, positivity of (A,O,C) and (A,O,D) give us yc, yd > 0. Next, observe that

O(B,O,C) = det(−B,C) = −xbyc + xcyb;

O(B,O,D) = det(−B,D) = −xbyd + xdyb;

O(C,O,D) = det(−C,D) = −xcyd + xdyc.

Since yb, yc, yd > 0, we have yb
yc
, yd
yc
> 0, which implies

O(B,O,D) = −xbyd + xdyb =
yb
yc

O(C,O,D) +
yd
yc

O(B,O,C) > 0.

This shows positivity of (B,O,D).

The proof for the backward direction is analogous. Normalize so that O = (0, 0) and
D = (1, 0). Let A = (xa, ya), B = (xb, yb), C = (xc, yc). Positivity of (A,O,D), (B,O,D),
and (C,O,D) implies ya, yb, yc > 0. One can then check that

O(A,O,C) = −xayc + xcya =
yc
yb

O(A,O,B) +
ya
yb

O(B,O,C) > 0.

This shows positivity of (A,O,C).

O

A

B

C

D

O

A

B

C

D

Figure 12: Examples of O,A,B,C,D in Lemma 3.14.

The next proposition formalizes our claim on the orientation of transversals.

Proposition 3.15. Let P be an N-representative of a k-spiral [P ]. For all i > N , if [P ] is
type-α, then (Pi, Pi+k, Pi+2k) is positive; if [P ] is type-β, then (Pi+2k, Pi+k, Pi) is positive.

Proof. The proof applies Lemma 3.14 with suitable choices of O,A,B,C,D. See Figure 13
for the configuration of points involved.

We start with P of type-α. Consider the following choices of vertices:

O = Pi+k; A = Pi; B = Pi+k−1; C = Pi+2k; D = Pi+k+1.
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Pi+1

Pi−1

Pi+k−1

Pi+k
Pi+k+1

Pi+2k−1

Pi+2k

Pi+2k+1

Pi

Pi−1

Pi

Pi+1

Pi+k

Pi+k−1

Pi+k+1

Pi+2k

Pi+2k−1

Pi+2k+1

Figure 13: Left: Sα
k,n configuration. Right: Sβ

k,n configuration.

It follows immediately from the definition of a type-α N -representative that (B,O,C)
and (B,O,D) are positive. The other conditions follow from applications of Proposition
2.2. Apply Proposition 2.2 with (Pi−1, Pi, Pi+k) positive and Pi+k−1 ∈ int(Pi−1, Pi, Pi+k)
to get positivity of (A,O,B). Apply Proposition 2.2 with (Pi, Pi+1, Pi+k+1) positive and
Pi+k ∈ int(Pi, Pi+1, Pi+k+1) to get positivity of (A,O,D). Apply Proposition 2.2 with
(Pi+k, Pi+k+1, Pi+2k+1) positive and Pi+2k ∈ int(Pi+k, Pi+k+1, Pi+2k+1) to get positivity of
(C,O,D). Then, the backward direction of Lemma 3.14 implies (Pi, Pi+k, Pi+2k) is positive.

The proof for type-β is analogous. Consider the following choices of vertices:

O = Pi+k; A = Pi+k−1; B = Pi+2k; C = Pi+k+1; D = Pi.

Positivity of (A,O,C) and (B,O,C) follows from the definition of a type-β N -representative.
A similar application of Proposition 2.2 as in the case of type-α gives positivity of (A,O,B),
(A,O,D), and (C,O,D), which we will omit. Finally, the forward direction of Lemma 3.14
implies (Pi+2k, Pi+k, Pi) is positive.

3.3 Invariance of Forward Orbit

In this section, we prove that Sα
k,n and Sβ

k,n are Tk-invariant. We will use Equation (1) for
our labeling convention. See Figure 14.

Pi+1

Pi+k+1

Pi+k

Pi

P ′
i

Figure 14: The labeling convention of the map Tk from Equation (1).

If P is k-nice, then P ′ is always well-defined. In particular, Proposition 3.8 implies Tk is
well-defined on Sα

k,n and Sβ
k,n.
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Remark 3.16. Tk doesn’t necessarily send k-nice twisted polygons to k-nice twisted poly-
gons. Here is an example provided by the anonymous referee: Fixing r ∈ (0, 1). Consider
the function P : Z → C ∼= R2 mapping z 7→ rz exp(zπi/k). One can check that P is a
k-nice twisted n-gon for any n ≥ 2 with monodromy that is a scale-rotation, but Tk(P ) is
the zero function and hence not k-nice. What we will show is that in the case of type-α and
type-β k-spirals, Tk does preserve k-niceness. This is a direct consequence of Theorem 1.1
and Proposition 3.8.

We proceed to prove the Tk-invariance of Sα
k,n and Sβ

k,n separately. We start with the
following lemma.

Lemma 3.17. Given four points A,B,C,D in R2 in general position with D ∈ int(A,B,C).
Let O = AB ∩ CD. There exist s ∈ (0, 1) and t ∈ (1,∞) such that

O = (1− s)A+ sB = (1− t)C + tD.

Proof. Since D ∈ int(A,B,C), there exists λ1, λ2, λ3 ∈ (0, 1) such that

λ1 + λ2 + λ3 = 1; D = λ1A+ λ2B + λ3C.

Taking s = λ2

1−λ3
and t = 1

1−λ3
gives us the desired result.

Proposition 3.18. For all k ≥ 2 and n ≥ 2, Tk(Sα
k,n) ⊂ Sα

k,n.

Proof. Given an N -representative P of some [P ] ∈ Sα
k,n, we will show that P ′ = Tk(P ) is a

type-α N -representative of [Tk(P )] by proving that for all i ≥ N , (P ′
i , P

′
i+1, P

′
i+2) is positive,

(P ′
i , P

′
i+1, P

′
i+k+1) is positive, and P

′
i+k ∈ int(P ′

i , P
′
i+1, P

′
i+k+1). See the left side of Figure 15

for configurations of relevant vertices of P and P ′.

Let i ≥ N be fixed. Since P is a type-α N -representative, Pj+k ∈ int(Pj, Pj+1, Pj+k+1) for
all j ≥ N . Applying Lemma 3.17 with Equation (1) on P ′

j for j ∈ {i, i+1, i+2, i+k, i+k+1}
gives us

P ′
i = (1− s1)Pi+1 + s1Pi+k+1; P ′

i+1 = (1− t1)Pi+1 + t1Pi+k+1;

P ′
i+1 = (1− s2)Pi+2 + s2Pi+k+2; P ′

i+2 = (1− t2)Pi+2 + t2Pi+k+2;

P ′
i+k = (1− s3)Pi+k+1 + s3Pi+2k+1; P ′

i+k+1 = (1− t3)Pi+k+1 + t3Pi+2k+1,

(9)

where s1, s2, s3 ∈ (0, 1) and t1, t2, t3 ∈ (1,∞). In particular, this shows P ′
i+k+1 ̸∈ P ′

iP
′
i+1, so

the three points P ′
i , P

′
i+1, P

′
i+k+1 are in general position.

To see that (P ′
i , P

′
i+1, P

′
i+2) is positive, Equation (3) and (9) give us

O(P ′
i , P

′
i+1, P

′
i+2) = det(P ′

i+1 − P ′
i , P

′
i+2 − P ′

i+1)

= det((s1 − t1)Pi+1 + (t1 − s1)Pi+k+1, (s2 − t2)Pi+2 + (t2 − s2)Pi+k+2)

= (t1 − s1)(t2 − s2) det(Pi+k+2 − Pi+2, Pi+1 − Pi+k+1).
(10)

Then, since O(Pi+1, Pi+2, Pi+k+2) > 0 and Pi+k+1 ∈ int(Pi+1, Pi+2, Pi+k+2), Proposition 2.2
implies det(Pi+k+2 − Pi+2, Pi+1 − Pi+k+1) > 0, so O(P ′

i , P
′
i+1, P

′
i+2) > 0.
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Next, we show that P ′
i+k ∈ int(P ′

i , P
′
i+1, P

′
i+k+1). Let r1 = 1−s1

t1−s1
and r2 = s3

t3
. (9) implies

r1, r2 ∈ (0, 1) and

P ′
i+k = (1− s3)Pi+k+1 + s3Pi+2k+1

=
(1− s3)(t1 − 1)

t1 − s1
P ′
i +

(1− s3)(1− s1)

t1 − s1
P ′
i+1 +

s3(t3 − 1)

t3 − s3
P ′
i+k +

s3(1− s3)

t3 − s3
P ′
i+k+1.

It follows that

P ′
i+k =

t3 − s3
t3(s3 − 1)

(
(1− s3)(t1 − 1)

t1 − s1
P ′
i +

(1− s3)(1− s1)

t1 − s1
P ′
i+1 +

s3(1− s3)

t3 − s3
P ′
i+k+1

)
=

(t3 − s3)(1− t1)

t3(t1 − s1)
P ′
i +

(t3 − s3)(s1 − 1)

t3(t1 − s1)
P ′
i+1 +

s3
t3
P ′
i+k+1

= (1− r2)(1− r1)P
′
i + (1− r2)r1P

′
i+1 + r2P

′
i+k+1.

Observe that the coefficients (1− r2)(1− r1), (1− r2)r1, r2 are all in (0, 1) and sum up to 1,
so P ′

i+k ∈ int(P ′
i , P

′
i+1, P

′
i+k+1).

Finally, using Equation (3) and (9), we have

det(P ′
i+1 − P ′

i , P
′
i+k+1 − P ′

i+k) = det((t1 − s1)(Pi+k+1 − Pi+1), (t3 − s3)(Pi+2k+1 − Pi+k+1))

= (t1 − s1)(t3 − s3) det(Pi+k+1 − Pi+1, Pi+2k+1 − Pi+k+1)

= (t1 − s1)(t3 − s3)O(Pi+1, Pi+k+1, Pi+2k+1).
(11)

Proposition 3.15 implies O(Pi+1, Pi+k+1, Pi+2k+1) > 0, so det(P ′
i+1 − P ′

i , P
′
i+k+1 − P ′

i+k) > 0
Since P ′

i , P
′
i+1, P

′
i+k+1 are in general position and P ′

i+k ∈ int(P ′
i , P

′
i+1, P

′
i+k+1), Proposition

2.2 and Equation (11) imply O(P ′
i , P

′
i+1, P

′
i+k+1) > 0. We conclude that P ′ is a type-α

N -representative.

P0

P1

P2

P3

Pk

Pk+1

Pk+2

Pk+3

P2k

P2k+1

P2k+2

P ′
0

P ′
1

P ′
k P ′

2

P ′
k+1

P0 P1

P2

P3

Pk

Pk+1

Pk+2

Pk+3

P2k

P2k+1

P2k+2

P ′
0

P ′
1

P ′
2

P ′
k

P ′
k+1

Figure 15: Left: Proposition 3.18 configuration. Right: Proposition 3.19 configuration.

Proposition 3.19. For all k ≥ 2 and n ≥ 2, Tk(Sβ
k,n) ⊂ Sβ

k,n.
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Proof. The proof is analogous to the one for Proposition 3.18. Replacing α with β, we may
work with the setup in the proof of Proposition 3.18. See the right side of Figure 15.

The key difference between type-α and type-β is that conditions for type-β k-spirals
give us the following linear relations when we apply Lemma 3.17 with (1) on P ′

j for j ∈
{i, i+ 1, i+ 2, i+ k, i+ k + 1}:

P ′
i = (1− t1)Pi+1 + t1Pi+k+1; P ′

i+1 = (1− s1)Pi+1 + s1Pi+k+1;

P ′
i+1 = (1− t2)Pi+2 + t2Pi+k+2; P ′

i+2 = (1− s2)Pi+2 + s2Pi+k+2;

P ′
i+k = (1− t3)Pi+k+1 + t3Pi+2k+1; P ′

i+k+1 = (1− s3)Pi+k+1 + s3Pi+2k+1,

(12)

where s1, s2, s3 ∈ (0, 1) and t1, t2, t3 ∈ (1,∞). We can see that P ′
i+k ̸∈ P ′

iP
′
i+1, so the three

points P ′
i , P

′
i+1, P

′
i+k are in general position.

A very similar computation as Equation (10) shows positivity of (P ′
i , P

′
i+1, P

′
i+2), so we

will omit. Next, let r1 =
t1−1
t1−s1

and r2 =
s3
t3
. Notice that (1 − r2)(1 − r1), (1 − r2)r1, and r2

are all in (0, 1) and sum up to 1. Also, Equation (12) implies

P ′
i+k+1 = (1− r2)(1− r1)P

′
i + (1− r2)r1P

′
i+1 + r2P

′
i+k.

This shows P ′
i+k+1 ∈ int(P ′

i , P
′
i+1, P

′
i+k). Finally, positivity of (P ′

i .P
′
i+1, P

′
i+k) follows from a

similar computation as Equation (11), P ′
i+k+1 ∈ int(P ′

i , P
′
i+1, P

′
i+k), the three points P

′
i , P

′
i+1, P

′
i+k

are in general position, and Proposition 2.2.

3.4 Invariance of Backward Orbit

In this section, we complete the proof of Theorem 1.1 by showing that Sα
k,n and Sβ

k,n are T−1
k -

invariant. One can derive a formula for T−1
k from Equation (1). Given any k-nice twisted

n-gon P ′, P = T−1
k (P ′) is given by

Pi = P ′
i−k−1P

′
i−k ∩ P ′

i−1P
′
i . (13)

Proposition 3.8 implies T−1
k is well-defined on Sα

k,n and Sβ
k,n. In general, T−1

k needs not
preserve k-niceness of twisted polygons.

Proposition 3.20. For all k ≥ 2 and n ≥ 2, T−1
k (Sα

k,n) ⊂ Sα
k,n.

Proof. Given P ′ a type-α N -representative, we will show that P = T−1
k (P ′) is a type-α

(N + k + 1)-representative by proving that for all i ≥ N + k + 1, (Pi, Pi+1, Pi+2) is positive,
(Pi, Pi+1, Pi+k+1) is positive, the four points Pi, Pi+1, Pi+k, Pi+k+1 are in general position,
and Pi+k ∈ int(Pi, Pi+1, Pi+k+1). See the left side of Figure 16 for configurations of relevant
vertices of P ′ and P .

Let i ≥ N + k + 1 be fixed. Since P ′ is a type-α N -representative, we must have
P ′
j+k ∈ int(P ′

j , P
′
j+1, P

′
j+k+1) for all j ≥ N . Applying Lemma 3.17 with Equation (13) on Pj
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for j ∈ {i, i+ 1, i+ 2, i+ k, i+ k + 1} gives us

Pi = (1− s1)P
′
i−k + s1P

′
i−k−1; Pi = (1− t1)P

′
i + t1P

′
i−1;

Pi+1 = (1− s2)P
′
i−k+1 + s2P

′
i−k; Pi+1 = (1− t2)P

′
i+1 + t3P

′
i ;

Pi+2 = (1− s3)P
′
i−k+2 + s3P

′
i−k+1; Pi+k = (1− s4)P

′
i + s4P

′
i−1;

Pi+k+1 = (1− s5)P
′
i+1 + s5P

′
i ,

(14)

where s1, s2, s3, s4, s5 ∈ (0, 1) and t1, t2 ∈ (1,∞).

We first show that (Pi, Pi+1, Pi+k+1) is positive. From Equation (14) we have

O(Pi, Pi+1, Pi+k+1) = (t1t2(1− s5)− t1(1− t2)s5)O(P ′
i−1, P

′
i , P

′
i+1).

It follows that O(Pi, Pi+1, Pi+k+1) > 0, so (Pi, Pi+1, Pi+k+1) is positive.

Next, we show that Pi+k ∈ int(Pi, Pi+1, Pi+k+1). Let r1 = t2−1
t2−s5

and r2 = s4
t1
. Equation

(14) implies r1, r2 ∈ (0, 1) and

Pi+k = (1− r2)(1− r1)Pi+1 + (1− r2)r1Pi+k+1 + r2Pi.

Observe that the coefficients (1− r2)(1− r1), (1− r2)r1, and r2 are all in (0, 1) and sum up
to 1, so Pi+k ∈ int(Pi, Pi+1, Pi+k+1).

Finally, we check (Pi, Pi+1, Pi+2) is positive. We aim to invoke Lemma 3.14 with the
following choices of vertices:

O = Pi+1; A = Pi; B = Pi+k+1; C = Pi+2; D = P ′
i−k+1. (15)

Positivity of (A,O,B) is a direct consequence of the above argument. Positivity of (B,O,C)
follows from positivity of (Pi+1, Pi+2, Pi+k+2), Pi+k+1 ∈ int(Pi+1, Pi+2, Pi+k+2), and Proposi-
tion 2.2. Next, observe that

O(A,O,D) = s1s2O(P ′
i−k−1, P

′
i−k, P

′
i−k+1);

O(C,O,D) = (1− s3)s2O(P ′
i−k, P

′
i−k+1, P

′
i−k+2);

O(B,O,D) = s2(1− s5)O(P ′
i−k, P

′
i−k+1, P

′
i+1) + s2s5O(P ′

i−k, P
′
i−k+1, P

′
i );

(16)

Then, positivity of (A,O,D) and (C,O,D) follows from positivity of (P ′
i−k−1, P

′
i−k, P

′
i−k+1)

and (P ′
i−k, P

′
i−k+1, P

′
i−k+2). To see that (B,O,D) is positive, apply Proposition 2.2 on

(P ′
i−k, P

′
i−k+1, P

′
i+1) positive and P ′

i ∈ int(P ′
i−k, P

′
i−k+1, P

′
i+1) to get (P ′

i−k, P
′
i−k+1, P

′
i ) posi-

tive. The backward direction of Lemma 3.14 then implies (Pi, Pi+1, Pi+2) is positive. We
conclude that P is a type-α (N + k + 1)-representative.

Proposition 3.21. For all k ≥ 2 and n ≥ 2, T−1
k (Sβ

k,n) ⊂ Sβ
k,n.

Proof. The proof is similar to that of Lemma 3.20 (See right side of Figure 16). We will point
out some key differences. Replacing α with β, we may work with the setup in the proof of
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Figure 16: Left: Proposition 3.20 configuration. Right: Proposition 3.21 configuration.

Proposition 3.20. Applying Lemma 3.17 with (13) on Pj for j ∈ {i, i+1, i+2, i+k, i+k+1}
gives us

Pi = (1− s1)P
′
i−k + s1P

′
i−k−1; Pi = (1− t1)P

′
i−1 + t1P

′
i ;

Pi+1 = (1− s2)P
′
i−k+1 + s2P

′
i−k; Pi+1 = (1− t2)P

′
i + t3P

′
i+1;

Pi+2 = (1− s3)P
′
i−k+2 + s3P

′
i−k+1; Pi+k = (1− s4)P

′
i−1 + s4P

′
i ;

Pi+k+1 = (1− s5)P
′
i + s5P

′
i+1,

(17)

where s1, s2, s3, s4, s5 ∈ (0, 1) and t1, t2 ∈ (1,∞). Positivity of (Pi, Pi+1, Pi+k) follows from a
similar computation as in (3.4). Next, let r1 =

1−s4
t1−s4

and r2 =
s5
t2
. Equation (17) implies

Pi+k+1 = (1− r2)(1− r1)Pi+k + (1− r2)r1Pi + r2Pi+1.

Observe that the coefficients (1− r2)(1− r1), (1− r2)r1, and r2 are all in (0, 1) and sum up
to 1, so Pi+k+1 ∈ int(Pi, Pi+1, Pi+k).

Finally, assign O,A,B,C,D to be the same vertices as in (15). Positivity of (A,O,B),
(B,O,C), (C,O,D), (A,O,D), and (B,O,D) follows from a very similar proof as that of
Proposition 3.20, with (16) replaced by

O(A,O,D) = s1s2O(P ′
i−k−1, P

′
i−k, P

′
i−k+1);

O(C,O,D) = (1− s3)s2O(P ′
i−k, P

′
i−k+1, P

′
i−k+2);

O(B,O,D) = s2(1− s5)O(P ′
i−k, P

′
i−k+1, P

′
i ) + s2s5O(P ′

i−k, P
′
i−k+1, P

′
i+1).

The backward direction of Proposition 3.14 then implies (Pi, Pi+1, Pi+2) is positive.

We conclude this section by stating that Proposition 3.18, 3.19, 3.20, 3.21 together prove
Theorem 1.1.

4 Coordinate Representation of 3-Spirals

4.1 The Tic-Tac-Toe Grids

Recall the intervals I = (−∞, 0), J = (0, 1), K = (1,∞) from §1.3. One can partition R2

into a 3× 3 grid. See Figure 5. We make the following definition:
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Definition 4.1. For n ≥ 2, let Sn(I, J) be the subset of Pn that satisfies the following: given
[P ] ∈ Sn(I, J), for all i ∈ {0, . . . , n− 1}, (x2i, x2i+1) ∈ I × J . We similarly define Sn(K, J),
Sn(J, I), and Sn(J,K).

The following symmetries of the four grids follow directly from Definition 4.1.

Proposition 4.2. For i ∈ Z, define the map σi : Z → Z by σi(x) = x + i. Define the map
ι : Z → Z by ι(x) = −x. Given [P ] ∈ Pn, the followings are true:

• If [P ] ∈ Sn(I, J), then [P ◦ σi] ∈ Sn(I, J) for all i ∈ Z. This also holds for Sn(K, J),
Sn(J, I), and Sn(J,K).

• [P ] ∈ Sn(I, J) if and only if [P ◦ ι] ∈ Sn(J, I).

• [P ] ∈ Sn(K, J) if and only if [P ◦ ι] ∈ Sn(J,K).

To understand the geometry implied by the corner invariants, we need to examine what
happens when the corner invariants take value from 0, 1,∞.

Proposition 4.3. For all [P ] ∈ Pn with corner invariants xj = xj(P ) and i ∈ Z, we have
the following correspondence between the position of Pi+2 and the values of x2i and x2i+1:

Configuration Coordinates Configuration Coordinates
Pi+2 ∈ Pi+1Pi x2i = 0 Pi+2 ∈ Pi−1Pi+1 x2i+1 = 0
Pi+2 ∈ Pi+1Pi−2 x2i = 1 Pi+2 ∈ Pi−1Pi−2 x2i+1 = 1
Pi+2 ∈ Pi+1Pi−1 x2i = ∞ Pi+2 ∈ Pi−1Pi x2i+1 = ∞

m2m3

m4

Pi−2 Pi−1

Pi

Pi+1

l1l2

l3

Figure 17: Configurations of points and lines in the proof of Proposition 4.3.

Proof. Consider the following lines:

l1 = Pi+1Pi−2; l2 = Pi+1Pi−1; l3 = Pi+1Pi; l4 = Pi+1Pi+2;

m1 = Pi−1Pi+2; m2 = Pi−1Pi+1; m3 = Pi−1Pi; m4 = Pi−1Pi−2.

See Figure 17 for a visualization of the configurations of points and lines. Equation (8)
implies x2i = χ(l1, l2, l3, l4) and x2i+1 = χ(m1,m2,m3,m4). This yields
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Configuration Lines Coordinates Configuration Lines Coordinates
Pi+2 ∈ Pi+1Pi l4 = l3 x2i = 0 Pi+2 ∈ Pi−1Pi+1 m1 = m2 x2i+1 = 0
Pi+2 ∈ Pi+1Pi−2 l4 = l1 x2i = 1 Pi+2 ∈ Pi−1Pi−2 m1 = m4 x2i+1 = 1
Pi+2 ∈ Pi+1Pi−1 l4 = l2 x2i = ∞ Pi+2 ∈ Pi−1Pi m1 = m3 x2i+1 = ∞

which is precisely the relationship described in the proposition.

Remark 4.4. Proposition 4.3 also gives us a way to determine the position of Pi+2 when
neither x2i nor x2i+1 takes value in 0, 1,∞. Suppose the four points Pi−2, Pi−1, Pi, Pi+1 are in
general position. For i, j, k ∈ {1, 2, 3} distinct, we define Ui,j to be the connected component
of RP2 − (li ∪ lj) that does not intersect lk. For i, j, k ∈ {2, 3, 4} distinct, we define Vi,j to
be the connected component of RP2 − (mi ∪mj) that does not intersect mk. See Figure 18
for a visualization of the Ui,j’s and Vi,j’s using the point configurations given in Figure 17.
By Proposition 4.3 and continuity of χ, we have the following:

Configuration Coordinates Configuration Coordinates
Pi+2 ∈ U2,3 x2i = I Pi+2 ∈ V2,3 x2i+1 = I
Pi+2 ∈ U1,3 x2i = J Pi+2 ∈ V2,4 x2i+1 = J
Pi+2 ∈ U1,2 x2i = K Pi+2 ∈ V3,4 x2i+1 = K

Corollary 4.5. Given [P ] ∈ Pn with corner invariants xj = xj(P ), if xj ̸∈ {0, 1,∞} for all
j, then P is 3-nice. Moreover, every four consecutive points of P are in general position.

Proof. Using Proposition 4.3 we may check that

Collinearity Coordinates Collinearity Coordinates
Pi−2, Pi−1, Pi+1 x2i−1 = ∞ Pi−1, Pi, Pi+2 x2i+1 = ∞
Pi−2, Pi−1, Pi+2 x2i+1 = 1 Pi−1, Pi+1, Pi+2 x2i+1 = 0
Pi−2, Pi+1, Pi+2 x2i = 1 Pi, Pi+1, Pi+2 x2i = 0
Pi−1, Pi, Pi+1 x2i−2 = 0

All seven cases contradict the assumption in the corollary. Therefore, the four points
Pi−2, Pi−1, Pi+1, Pi+2 are in general position, and the four consecutive points Pi−1, Pi, Pi+1,
Pi+2 are in general position for all i ∈ Z. This shows P is 3-nice, and every four consecutive
points of P are in general position.

Our goal of this section is to prove the following correspondence theorem:

Theorem 4.6. For all n ≥ 2, Sα
3,n = Sn(J, I), Sβ

3,n = Sn(K, J).

This theorem immediately produces the following important corollary.

Corollary 4.7. For all n ≥ 2, the four cells Sn(I, J), Sn(K, J), Sn(J, I), Sn(J,K) are both
forward and backward invariant under T3.
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l1l2

l3

m3
m2

m4

U1,3

U2,3

U1,2
V3,4

V2,3

V2,4

Figure 18: The connected components Ui,j ’s and Vi,j ’s in Remark 4.4. The corner invariants
value in I if Pi+2 lies in the black-shaded region, J if Pi+2 lies in the red-shaded region, and
K if Pi+2 lies in the cyan-shaded region.

Proof. The case Sn(J, I) and Sn(K, J) follows immediately from Theorem 1.1 and 4.6. We
will prove the case Sn(I, J). The case Sn(J,K) is completely analogous, so we will omit.

Fixing [P ] ∈ Sn(I, J). Recall the maps σi and ι from Proposition 4.2. Equation (1)
implies T3(P ◦ ι) = T3(P ) ◦ ι ◦ σ4. Then, Proposition 4.2 implies [P ◦ ι] ∈ Sn(J, I), so
[T3(P ◦ ι)] ∈ Sn(J, I). Finally, observe that

T3(P ) = (T3(P ) ◦ ι ◦ σ4) ◦ (σ−4 ◦ ι) = T3(P ◦ ι) ◦ (σ−4 ◦ ι).

It follows that [T3(P )] ∈ Sn(I, J). We omit the proof of [T−1
3 (P )] ∈ Sn(I, J).

4.2 The Correspondence of Sα
3,n and Sn(J, I)

Here we show that Sα
3,n is equivalent to Sn(J, I). We will first show that the corner invariants

of a 0-representative P of some [P ] ∈ Sα
3,n satisfies Sn(J, I). Then, we will show that we can

find type-α N -representatives for all N ∈ Z given any [P ] ∈ Sn(J, I).

Lemma 4.8. If P is an N-representative of [P ] ∈ Sα
3,n, then Pi+2 ∈ int(Pi−1, Pi, Pi+1) for

all i > N + 1.

Proof. Since (Pi−1, Pi, Pi+1) is positive, we may normalize with Aff+
2 (R) so that Pi−1 =

(−1, 0), Pi = (0, 0), and Pi+1 = (0, 1). Let Pi+2 = (x, y). It suffices to show that x <
0, y > 0, and y − x < 1. We get x < 0 from positivity of (Pi, Pi+1, Pi+2), and we get
y > 0 from positivity of (Pi−1, Pi, Pi+2). Finally, since (Pi−2, Pi−1, Pi+2) is positive and
Pi+1 ∈ int(Pi−2, Pi−1, Pi+2), Proposition 2.2 implies (Pi+1, Pi−1, Pi+2) is positive, which gives
us y − x < 1 as desired.

Proposition 4.9. For all n ≥ 2, Sα
3,n ⊂ Sn(J, I).
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Proof. Fixing i ∈ Z. Let P be an (i− 3)-representative of [P ] ∈ Sα
3,n with corner invariants

xj = xj(P ). Normalize with Aff+
2 (R) so that Pi−1 = (−1, 0), Pi = (0, 0), and Pi+1 = (0, 1).

Let sa,b denote the slope of the line Pi+aPi+b. See Figure 19 for the configuration of points.

We want to show that (x2i, x2i+1) ∈ I×J . By Lemma 4.8, Pi+1 ∈ int(Pi−2, Pi−1, Pi). This
implies s1,−2 > s−1,−2 > 1. On the other hand, since Pi+1 ∈ int(Pi−2, Pi−1, Pi+2), we have
s1,2 > s1,−2 > 1, and s−1,2 ∈ (0, 1). This gives us

x2i =
(s1,−2 − s1,−1)(s1,0 − s1,2)

(s1,−2 − s1,0)(s1,−1 − s1,2)
=
s1,−2 − 1

s1,2 − 1
∈ J and

x2i+1 =
(s−1,2 − s−1,1)(s−1,0 − s−1,−2)

(s−1,2 − s−1,0)(s−1,1 − s−1,−2)
=
s−1,−2(s−1,2 − 1)

s−1,2(s−1,−2 − 1)
∈ I.

This concludes the proof.

Pi−2

Pi−1 Pi

Pi+1

Pi+2

Figure 19: Configuration of Proposition 4.9 and 4.10.

Proposition 4.10. For all n ≥ 2, Sα
3,n = Sn(I, J).

Proof. Proposition 4.9 implies we only need to show Sα
3,n ⊃ Sn(I, J). Given [P ] ∈ Sn(I, J),

let P be a representative that satisfies P−1 = (1, 4), P0 = (−1, 0), P1 = (0, 0), P2 = (0, 1).
Say that P satisfies condition (∗)i if the three triangles (Pi−1, Pi, Pi+1), (Pi, Pi+1, Pi+2),
(Pi−1, Pi, Pi+2) are all positive, Pi+2 ∈ int(Pi−1, Pi, Pi+1), and Pi+2 ∈ int(Pi−2, Pi−1, Pi+1).

We show that for all i > 0, if P satisfies (∗)i−1, then P satisfies (∗)i. Since (Pi−1, Pi, Pi+1)
is positive, we can normalize with Aff+

2 (R) so that Pi−1 = (−1, 0), Pi = (0, 0), and Pi+1 =
(0, 1). Let sa,b denote the slope of Pi+aPi+b. Since Pi+1 ∈ int(Pi−2, Pi−1, Pi), we know that

s1,−2 > s−1,−2 > 1. Then, x2i ∈ J implies 0 < s1,−2−1

s1,2−1
< 1. This gives us s1,2 > s1,−2 > 1.

On the other hand, x2i+1 ∈ I implies s−1,−2(s−1,2−1)

s−1,2(s−1,−2−1)
< 0. Since s−1,−2 > 1, this is equivalent

to 1 − 1
s−1,2

< 0, which implies s−1,2 ∈ (0, 1). Thus, the two lines Pi−1Pi+2 and Pi+1Pi+2

must meet in the shaded triangle in Figure 19, which implies (Pi, Pi+1, Pi+2), (Pi−1, Pi, Pi+2)
are positive, Pi+2 ∈ int(Pi−1, Pi, Pi+1), and Pi+2 ∈ int(Pi−2, Pi−1, Pi+1), so P satisfies (∗)i.
Finally, since P clearly satisfies (∗)0, by induction P satisfies (∗)i for all i ≥ 0, so P is a
type-α 0-representative of a 3-spiral. We conclude that [P ] ∈ Sα

3,n.
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4.3 The Correspondence of Sβ
3,n and Sn(K, J)

Here we show that Sβ
3,n is equivalent to Sn(K, J). The ideas behind the proofs are essentially

the same as the ones in §4.2. We will focus on explaining how to modify the details of the
proofs in §4.2 for type-β 3-spirals and Sn(K, J).

Lemma 4.11. If P is an N-representative of [P ] ∈ Sβ
3,n, then the quadrilateral joined by

vertices (Pi, Pi+1, Pi+2, Pi+3) is convex for all i > N .

Proof. Normalize with Aff+
2 (R) so that Pi = (−1, 0), Pi+1 = (0, 0), Pi+2 = (0, 1), and Pi+3 =

(x, y). Positivity of (Pi+1, Pi+2, Pi+3) and (Pi, Pi+1, Pi+3) implies x < 0 and y > 0. Positivity
of (Pi−1, Pi, Pi+2), Pi+3 ∈ int(Pi−1, Pi, Pi+2), and Proposition 2.2 shows y − x > 1.

Proposition 4.12. For all n ≥ 2, Sβ
3,n ⊂ Sn(K, J).

Proof. Let P be a (−3)-representative of [P ] ∈ Sβ
3,n with corner invariants xj = xj(P ).

Lemma 4.11 implies the quadrilateral (Pi−2, Pi−1, Pi, Pi+1) is convex. Next, since P is a
type-β (−3)-representative, Pi ∈ int(Pi−2, Pi−1, Pi+1) for all i ≥ 0 (See Figure 20). Referring
back to Remark 4.4, convexity of (Pi−2, Pi−1, Pi, Pi+1) implies PiPi+1 doesn’t go through
Pi−2, Pi−1, Pi+1, so (x2i, x2i+1) ∈ K × J whenever Pi+2 ∈ int(Pi−2, Pi−1, Pi+1).

Pi−2

Pi−1

PiPi+1

Pi+2

Figure 20: Configuration of Proposition 4.12 and Lemma 4.13.

Lemma 4.13. Given a 3-nice sequence P : Z → RP2 and an integer i ∈ Z, let x2i = x2i(P )
and x2i+1 = x2i+1(P ) be the corner invariants of P . If the following conditions are true:

• (Pi−2, Pi−1, Pi) and (Pi−1, Pi, Pi+1) are both positive;

• The quadrilateral (Pi−2, Pi−1, Pi, Pi+1) is convex;

• (x2i, x2i+1) ∈ K × J .

Then, the followings hold:

• Pi+2 ∈ int(Pi−2, Pi−1, Pi+1);

• The quadrilateral (Pi−1, Pi, Pi+1, Pi+2) is convex;

• (Pi, Pi+1, Pi+2) and (Pi−1, Pi, Pi+2) are both positive.
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Proof. Recall that from the proof of Proposition 4.12, we claimed that if the quadrilateral
(Pi−2, Pi−1, Pi, Pi+1) is convex, then the line PiPi+1 doesn’t go through (Pi−2, Pi−1, Pi+1).
Since (x2i, x2i+1) ∈ K × J , Remark 4.4 implies Pi+2 ∈ int(Pi−2, Pi−1, Pi+1), in which case all
conclusions of this lemma will hold. See Figure 20 for a visualization of the five points.

Proposition 4.14. Sβ
3,n = Sn(K, J).

Proof. Proposition 4.12 gives us Sβ
3,n ⊂ Sn(K, J), so we show the other containment. Given

[P ] ∈ Sn(K, J), we can find a representative P that satisfies PN = (0, 0), PN+1 = (1, 0),
PN+2 = (1, 1), PN+3 = (0, 1). Corollary 4.5 shows that P is 3-nice. To see that (Pi, Pi+1, Pi+2),
(Pi, Pi+1, Pi+3) are positive, and Pi+4 ∈ int(Pi, Pi+1, Pi+3), we may inductively apply Lemma
4.13. This implies [P ] ∈ Sβ

3,n.

5 A Birational Formula for T3

Given two spaces X and Y , a rational map f : X 99K Y is an equivalence class of maps
fU : U → Y where U is a dense open in X, and the equivalence relation is given by fU ∼ fV
if they restrict to the same map on U ∩ V . A map f : X 99K Y is birational if there exists a
rational map g : Y 99K X such that g ◦ f restricts to the identity on a dense open of X and
f ◦ g restricts to an identity on a dense open of Y .

In this section, we show that T3 : Pn 99K Pn is a birational map by finding an explicit
formula using the corner invariants.

5.1 The Formula

Let P be a twisted n-gon, and P ′ = T3(P ). In this section, we use a different labeling
convention:

P ′
i = Pi−2Pi+1 ∩ Pi−1Pi+2. (18)

We let xj = xj(P ) and x
′
j = xj(P

′) denote the corner invariants of P and P ′ respectively.
Our goal is to show that T3 is a birational map over the corner invariants. I discovered it
using computer algebra and the reconstruction formula in [Sch08, Equation (19)].

Proposition 5.1. Given [P ] ∈ P3,n, the following formula holds (indices taken modulo 2n):
x′2i = x2i−2 ·

(x2i−4 + x2i−1 − 1)

x2i−2x2i−1 − (1− x2i+1)(1− x2i−4)
;

x′2i+1 = x2i+3 ·
(x2i+2 + x2i+5 − 1)

x2i+2x2i+3 − (1− x2i+5)(1− x2i)
.

(19)

One can verify Equation (19) with the following procedure: Given the corner invariants of
[P ], use the reconstruction formula from [Sch08, Equation (19)] to obtain a representative P .
Apply T3 on P as in Equation (18) to get P ′ = T3(P ). Then, compute the corner invariants
of P ′. We present a geometric proof of Equation (19) using cross-ratio identities.
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Lemma 5.2. Let Q1, Q2, Q3, Q4 be four points in general position, and let ω be a line that
contains none of the four points. For all i ̸= j, let lij = QiQj and Sij = ω ∩ lij Then,

χ(S12, S13, S14, S24) = χ(S23, S13, S34, S24).

Q1

Q4

Q3

Q2

l13

l14l23
l34

l24

l12

S12 S13S34 S23 S14 S24

ω

O

Figure 21: Point configurations of Lemma 5.2

Proof. Let O = l13∩ l24. See Figure 21 for an example of the point configurations. Applying
Equation (6) on (l12, l13, l14, Q1D) with respect to ω and Q2Q4 gives us

χ(S12, S13, S14, S24)
ω
= χ(l12, l13, l14, Q1D)

l24= χ(Q2, O,Q4, S24).

Next, applying Equation (6) twice on (l23, l13, l34, Q3D) with respect to l24 and ω gives us

χ(Q2, O,Q4, S24)
l24= χ(l23, l13, l34, Q3D)

ω
= χ(S23, S13, S34, S24).

Combining the above two equations completes the proof.

Proof of Proposition 5.1. From the symmetry of Equation (19), it suffices to prove the for-
mula for x′0. That is,

x′0 =
x−2(x−4 + x−1 − 1)

x−2x−1 − (1− x−4)(1− x1)
. (20)

Let li,j = PiPj and O = l−3,−2 ∩ l−1,0. We label points as follows:

A = P ′
−2;

B = P ′
−1;

C = l−3,0 ∩ l−2,1;

D = P0;

E = P−3;

F = l−3,0 ∩ l−1,1;

G = l−3,0 ∩ l−2,−1;

H = l−3,0 ∩OP1.
(21)

Since [P ] ∈ P3,n, every five consecutive points of [P ] are in general position. This ensures
that point O and the points in Equation (21) are all distinct. See Figure 22 for a visualization
of the assignment of labels to these points.
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Figure 22: Visualization of Points Assigned in Equation (21). The thick black line segments
are edges connecting vertices of P , and the thick red line segments are edges connecting vertices
of P ′.

It follows from Equation (7) that x′0 = χ(A,B,C,D). Using Equation (8), we have

x−4 = χ(l−1,−4, l−1,−3, l−1,−2, l−1,0)
l−3,0
= χ(A,E,G,D);

x−2 = χ(l0,−3, l0,−2, l0,−1, l0,1)
l−3,0
= χ(E,B,H,D);

x−1 = χ(l−2,1, l−2,0, l−2,−1, l−2,−3)
l−3,0
= χ(B,D,G,E);

x1 = χ(l−1,2, l−1,1, l−1,0, l−1,−2)
l−3,0
= χ(C,F,D,G).

(22)

We may further invoke Lemma 5.2 with Q1 = P−2, Q2 = O, Q3 = P1, Q4 = P−1, and
ω = l−3,0. This gives us

x−2 = χ(E,B,H,D) = χ(G,B, F,D). (23)

The rest of the proof is just algebraic verification. Normalize with a projective transfor-
mation so that l−3,0 is the x-axis of A2. Let a, b, c, d, e, f , g, h be coordinates of A, B, C,
D, E, F , G, H respectively. Plugging (22) and (23) into the numerator of (20) gives us

x−2(x−4 + x−1 − 1) = χ(G,B, F,D) (χ(A,E,G,D) + χ(B,D,G,E)− 1)

=
(g − b)(f − d)

(g − f)(b− d)

(
(a− e)(g − d)

(a− g)(e− d)
+

(b− e)(g − d)

(b− g)(e− d)

)
=

(a− b)(g − d)(e− g)(d− f)

(a− g)(b− d)(e− d)(g − f)
.

The denominator can be computed similarly. We skip the computation and list the results:

x−2x−1 − (1− x−4)(1− x1) =
(a− c)(g − d)(d− f)(e− g)

(a− g)(c− d)(d− e)(f − g)
.
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Combining the above two equations gives us

x−2(x−4 + x−1 − 1)

x−2x−1 − (1− x−4)(1− x1)
=

(a− b)(c− d)

(a− c)(b− d)
= χ(A,B,C,D) = x′0,

which is precisely Equation (20).

Next, we provide a formula for the inverse of T3.

Proposition 5.3. The map T3 : Pn 99K Pn is birational. Its inverse is given by
x2i = x′2i+2 ·

(x′2i+4 + x′2i+1 − 1)

x′2i+1x
′
2i+2 − (1− x′2i−1)(1− x′2i+4)

;

x2i+1 = x′2i−1 ·
(x′2i−3 + x′2i − 1)

x′2ix
′
2i−1 − (1− x′2i+2)(1− x′2i−3)

.

(24)

We will give an algebraic proof. Consider two families of rational maps {µ(s,t) : R2n 99K
R2n}(s,t)∈Z2 and {ν(s,t) : R2n 99K R2n}(s,t)∈Z2 . Write (a0, . . . , a2n−1) = µ(s,t)(x0, . . . , x2n−1) and
(b0, . . . , b2n−1) = ν(s,t)(x0, . . . , x2n−1). Then, we have

a2i =
1− x2i+s

x2i+s+t

a2i+1 =
1− x2i+1−s

x2i+1−s−t

;


b2i =

1− x2i+s

1− x2i+sx2i+s+t

b2i+1 =
1− x2i+1−s

1− x2i+1−sx2i+1−s−t

.
(25)

Lemma 5.4. Let φ : Z2 → Z2 be the map given by

φ(s, t) = ((−1)s+1s, (−1)s(2s+ t)). (26)

Then, φ is an involution. Moreover, when t is odd, µ−1
(s,t) = νφ(s,t) and ν

−1
(s,t) = µφ(s,t).

Proof. To see φ is an involution, a direct computation shows that

φ2(s, t) = φ((−1)s+1s, (−1)s(2s+ t))

=
(
(−1)(−1)s+1s+s+2s, (−1)(−1)s+1s (2(−1)s+1s+ (−1)s(2s+ t))

)
= (s, t).

Next, we show that when t is odd, µ−1
(s,t) = νφ(s,t). We will show by direct computation that

µ(s,t) ◦ νφ(s,t) is the identity on the 2i-th coordinate when s is even. First, when s is even,
φ(s, t) = (−s, 2s+ t). The 2i-th coordinate of µ(s,t) ◦ νφ(s,t) is given by(

1−
1− x2i+s+(−s)

1− x2i+s+(−s)x2i+s+(−s)+(2s+t)

)
·
(

1− x2i+s+t−(−s)

1− x2i+s+t−(−s)x2i+s+t−(−s)−(2s+t)

)−1

=

(
1− 1− x2i

1− x2ix2i+2s+t

)(
1− x2i+2s+tx2i
1− x2i+2s+t

)
= x2i.

This is precisely what we want. One can similarly carry out the computation of νφ(s,t)◦µs,t for
the (2i+1)-th coordinate, and s odd. We will omit these heavy computations and conclude
that µ−1

(s,t) = νφ(s,t). Finally, to see ν−1
(s,t) = µφ(s,t), observe that (−1)s(2s + t) is odd iff t is

odd. Therefore, νs,t ◦ µφ(s,t) = νφ2(s,t) ◦ µφ(s,t) is the identity map by the previous argument.
The same argument shows that µφ(s,t) ◦ ν(s,t) is the identity.
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The following corollary is immediate. We omit the proof.

Corollary 5.5. For all (s, t) ∈ Z2 such that t is odd, µ(s,t) and ν(s,t) are birational maps.

Proof of Proposition 5.3. We first claim that T3 = ν(−1,−1) ◦ µ(3,−3). We will provide the
computation for even coordinates. Let (a0, . . . , x2n−1) denote the image of (x0, . . . , x2n−1)
under µ(3,−3), and let (b0, . . . , b2n−1) denote the image of (a0, . . . , a2n−1) under ν(−1,−1). Then,
we have

b2i =
1− a2i−1

1− a2i−1a2i−2

=

(
1− 1− x2i−4

x2i−1

)
·
(
1− (1− x2i−4)(1− x2i+1)

x2i−1x2i−2

)−1

=
x2i−2(x2i−1 + x2i−4 + 1)

x2i−1x2i−2 − (1− x2i−4)(1− x2i+1)
.

Observe that this is precisely the first line of (19). The computation for b2i+1 is analogous,
thus omitted. Then, by Corollary 5.5, T−1

3 = ν(3,−3) ◦ µ(−1,3). Finally, Equation (24) follows
from a direct computation of ν(3,−3) ◦ µ(−1,3) using Equation (25), which we will omit.

5.2 Conjugated Corner Invariants and Its T3 Formula

To relate Equation (19) to the y-variables in [GP16], it is convenient to consider another
coordinate system of Pn, which we define below.

Definition 5.6. Given [P ] ∈ Pn, define the conjugated corner invariants to be coordinate

functions x̃0(P ), . . . , x̃2n−1(P ) given by x̃j(P ) =
xj(P )

xj(P )−1
.

The conjugated corner invariants can be viewed as the image of the corner invariants
under a birational map λ : R2n 99K R2n sending each coordinate xj 7→ xj

xj−1
. Observe that λ2

restricted to the dense open (R−{0, 1})2n is the identity map, so x̃j(P ) is also a coordinate
system for Pn. Throughout this section, we will use x̃j = x̃j(P ) and x̃

′
j = x̃j(P

′) to denote
the conjugate corner invariants of P and P ′. We start by observing some symmetries of
conjugating our factorization maps µ(s,t) and ν(s,t) from Equation (25).

Lemma 5.7. For all (s, t) ∈ Z2, we have λ ◦ µ(s,t) ◦ λ = ν(s+t,−t).

Proof. We can check this by direct computation. We show that the equation holds on even
coordinates. The 2i-th coordinate of µ(s,t) ◦ λ is given by

1− x2i+s · (x2i+s − 1)−1

x2i+s+t · (x2i+s+t − 1)−1
=

1− x2i+s+t

x2i+s+t(x2i+s − 1)

The 2i-th coordinate of λ ◦ µ(s,t) ◦ λ is given by(
1− x2i+s+t

x2i+s+t(x2i+s − 1)

)
·
(

1− x2i+s+t

x2i+s+t(x2i+s − 1)
− 1

)−1

=
1− x2i+s+t

1− x2i+s+tx2i+s

,

which is precisely the 2i-th coordinate of ν(s+t,−t). The computation for the odd coordinates
is similar.
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Since λ is an involution, it immediately follows that λ ◦ ν(s,t) ◦ λ = µ(s+t,−t). This allows
us to obtain a formula for T3 with respect to the conjugated corner invariants.

Proposition 5.8. Given any 3-nice twisted n-gon P , the following formula holds (indices
taken modulo 2n): 

x̃′2i = x̃2i−2 ·
(1− x̃2i−1x̃2i−4)(1− x̃2i+1)

(1− x̃2i+1x̃2i−2)(1− x̃2i−1)
;

x̃′2i+1 = x̃2i+3 ·
(1− x̃2i+2x̃2i+5)(1− x̃2i)

(1− x̃2ix̃2i+3)(1− x̃2i+2)
.

(27)

Proof. From the proof of Proposition 5.3, we saw that the formula for T3 on the corner
invariants is given by ν(−1,−1) ◦ µ(3,−3). It follows that the formula for conjugated corner
invariants is λ ◦

(
ν(−1,−1) ◦ µ(3,−3)

)
◦ λ. By Lemma 5.7,

λ ◦
(
ν(−1,−1) ◦ µ(3,−3)

)
◦ λ =

(
λ ◦ ν(−1,−1) ◦ λ

)
◦
(
λ ◦ µ(3,−3) ◦ λ

)
= µ(−2,1) ◦ ν(0,3).

It remains to check that µ(−2,1) ◦ ν(0,3) agrees with Equation (27). The 2i-th coordinate of
µ(−2,1) ◦ ν(0,3) is given by(

1− 1− x̃2i−2

1− x̃2i−2x̃2i+1

)
·
(

1− x̃2i−1

1− x̃2i−1x̃2i−4

)−1

=
x̃2i−2(1− x̃2i−1x̃2i−4)(1− x̃2i+1)

(1− x̃2i−2x̃2i+1)(1− x̃2i−1)
.

This is precisely x̃′2i from Equation (27). The computation for odd coordinates is omitted.

Using Lemma 5.4, we can easily compute the formula of T−1
3 with respect to the conjugated

corner invariants. The proof is again a direct computation, so we omit it.

Corollary 5.9. The formula for T−1
3 with conjugated corner invariants is given by µ(0,3) ◦

ν(2,−3). More specifically,
x̃2i = x̃′2i+2 ·

(1− x̃′2i+1x̃
′
2i+4)(1− x̃′2i−1)

(1− x̃′2i−1x̃
′
2i+2)(1− x̃′2i+1)

;

x̃2i+1 = x̃′2i−1 ·
(1− x̃′2ix̃

′
2i−3)(1− x̃′2i+2)

(1− x̃′2i+2x̃
′
2i−1)(1− x̃′2i)

.

(28)

5.3 Relation to Y -Variables

In this section, we discuss how Equation (18) generalizes the results from [GP16]. The
propositions in this section hold for all four cells Sn(I, J), Sn(J, I), Sn(K, J), Sn(J,K). For
notation convenience, our statements will only mention Sn(J, I). The readers should assume
that the propositions hold for the other three cells with the same proof.

The map T3 along with the labeling convention of Equation (18) corresponds to the
following construction in [GP16]. Let a, b, c, d ∈ Z2 be distinct and assume a2 ≤ b2 ≤ c2 ≤ d2.
Say that S = {a, b, c, d} is a Y -pin if b2 < c2 and the vectors b− a, c− a, d− a generate all
of Z2.
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Definition 5.10 ([GP16, Definition 1.4]). Let S = {a, b, c, d} be a Y -pin and supposeD ≥ 2.
A Y -mesh of type S and dimension D is a grid of points P̂i,j in RPD with i, j ∈ Z which
together span all of RPD and such that

• P̂r+a, P̂r+b, P̂r+c, P̂r+d are distinct for all r ∈ Z2.

• Let Lr = P̂r+aP̂r+b. Then, P̂r+a, P̂r+b, P̂r+c, P̂r+d all lie on Lr for all r ∈ Z2.

• The four lines Lr−a, Lr−b, Lr−c, Lr−d (all of which contain P̂r) are distinct for all
r ∈ Z2.

Let S = {(−1, 0), (2, 0), (0, 1), (1, 1)}, which is a Y -pin. Given a representative P of some
[P ] ∈ Sn(J, I), we can consider a grid (P̂i,j)(i,j)∈Z2 where P̂i,j is the i-th vertex of T j

3 (P ).

Proposition 5.11. (P̂i,j) is a Y -mesh of type S and dimension 2.

Proof. The first two conditions of Definition 5.10 are straightforward to verify using the
identification Sn(J, I) = Sα

3,n from Proposition 4.10. For the third condition, let P (j) =

T j
3 (P ). Then, we have

Lr−a = P
(j)
i−1P

(j)
i+2, Lr−b = P

(j)
i−1P

(j)
i−4, Lr−c = P

(j)
i−1P

(j)
i , Lr−d = P

(j)
i−1P

(j)
i−2.

Notice also that Lr−a = P
(j+1)
i P

(j+1)
i+1 and Lr−b = P

(j+1)
i−2 P

(j+1)
i−1 , so 3-niceness of P (j+1) implies

they are distinct. The other pairings are distinct because of 3-niceness of P (j).

[GP16] then introduces the y-variables associated to a Y -mesh. Fix a Y -pin S = {a, b, c, d}
and a Y -mesh P̂ of type S and dimension D. For all r ∈ Z2, consider

yr(P̂ ) = −χ(P̂r+a, P̂r+c, P̂r+d, P̂r+b). (29)

See the left side of Figure 23 for the setup using the Y -mesh from Proposition 5.11.[GP16,
Theorem 1.6] give us the following relation on the y-variables.

yi+1,j yi+1,j+2 =
(1 + yi−1,j+1)(1 + yi+3,j+1)

(1 + y−1
i,j+1)(1 + y−1

i+2,j+1)
. (30)

Lemma 5.12. Given a representative P of [P ] ∈ Sn(I, J) with conjugated corner invariants
x̃j = x̃j(P ). Let (P̂i,j) be its corresponding Y -mesh with y-variables (yr)r∈Z2. For all i ∈ Z,

yi,0 = −x̃2ix̃2i+3. (31)

Proof. Let la,b = Pi+aPi+b. See right side of Figure 23 for the setup. Equation (8) gives us

x̃2i =
x2i

x2i − 1
= χ(l1,−2, l1,−1, l1,2, l1,0); x̃2i+3 =

x2i+3

x2i+3 − 1
= χ(l0,3, l0,2, l0,−1, l0,1).

Notice that (l1,−1 ∩ l0,−1)∩ (l1,2 ∩ l0,2) = Pi−1Pi+2 = l−1,2. Then, from elementary cross ratio
identities we have

x̃2ix̃2i+3 = χ(l1,−1 ∩ l−1,2, l1,−2 ∩ l−1,2, l0,3 ∩ l−1,2, l0,2 ∩ l−1,2)

= χ(P̂i−1,0, P̂i,1, P̂i+1,1, P̂i+2,0) = −yi,0,

which is precisely Equation (31).
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P̂i+1,0

Figure 23: Left: Definition of y-variables for the Y -mesh from Proposition 5.11. Right:
Relationship between y-variables and conjugated corner invariants.

Theorem 5.13. For the Y -pin S = {(−1, 0), (2, 0), (0, 1), (1, 1)}, the y-variables transfor-
mation formula from [GP16, Theorem 1.6] is a direct consequence of the birational formula
for the conjugated corner invariants under T3.

Proof. It suffices to show that we can use Equation (31) to derive (30) for j = −1. We first
compute yi+1,−1 and yi+1,1 using Equation (27) and (28):

yi+1,−1 = − x̃2i+4(1− x̃2i+3x̃2i+6)(1− x̃2i+1)

(1− x̃2i+1x̃2i+4)(1− x̃2i+3)
· x̃2i+3(1− x̃2i+1x̃2i+4)(1− x̃2i+6)

(1− x̃2i+3x̃2i+6)(1− x̃2i+4)

= − x̃2i+3x̃2i+4(1− x̃2i+1)(1− x̃2i+6)

(1− x̃2i+3)(1− x̃2i+4)
;

yi+1,1 = − x̃2i(1− x̃2i−2x̃2i+1)(1− x̃2i+3)

(1− x̃2ix̃2i+3)(1− x̃2i+1)
· x̃2i+7(1− x̃2i+6x̃2i+9)(1− x̃2i+4)

(1− x̃2i+4x̃2i+7)(1− x̃2i+6)

= − x̃2ix̃2i+7(1 + yi−1,0)(1 + yi+3,0)(1− x̃2i+3)(1− x̃2i+4)

(1 + yi,0)(1 + yi+2,0)(1− x̃2i+1)(1− x̃2i+6)
.

(32)

It follows that

yi+1,−1 yi+1,1 =
x̃2ix̃2i+3x̃2i+4x̃2i+7(1 + yi−1,0)(1 + yi+3,0)

(1 + yi,0)(1 + yi+2,0)

=
yi,0yi+2,0(1 + yi−1,0)(1 + yi+3,0)

(1 + yi,0)(1 + yi+2,0)
=

(1 + yi−1,0)(1 + yi+3,0)

(1 + y−1
i,0 )(1 + y−1

i+2,0)
.

This concludes the proof.

6 The Precompactness of T3 Orbits

In this section, we establish four algebraic invariants of T3. We then use them to prove
Theorem 1.3. Having Theorem 4.6 in hand, we may fully work with Sn(J, I) and Sn(K, J).
Our strategy is to use the algebraic invariants to show that the corner invariants are uniformly
bounded.
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6.1 The Four Invariants

Proposition 6.1. Given [P ] ∈ Pn with corner invariants xj = xj(P ), consider the following
four quantities Fi = Fi(P ):

F1 =
n−1∏
i=0

x2i
x2i − 1

; F2 =
n−1∏
i=0

x2i+1

x2i+1 − 1
; F3 =

n−1∏
i=0

x2i
x2i+1

; F4 =
n−1∏
i=0

1− x2i
1− x2i+1

. (33)

Then, Fi is invariant under T3 for i = 1, 2, 3, 4.

Proof. We first show that F3 is invariant under T3. Let F ′
3 denote the invariants obtained

by plugging in x′i from Equation (24). Observe that

F ′
3 = F3 ·

n−1∏
i=0

x2i−4 + x2i−1 − 1

x2i+2 + x2i+5 − 1
·
n−1∏
i=0

x2i+2x2i+3 − (1− x2i+5)(1− x2i)

x2i−2x2i−1 − (1− x2i+1)(1− x2i−4)
.

The two products of fractions on the right-hand side both equal 1. This can be shown by
applying cyclic permutations to the indices of the numerators. Therefore, F ′

3 = F3.

Next, we show that F1 and F2 are invariant. Using conjugated corner invariants, we see
that F1 =

∏n−1
i=0 x̃2i and F2 =

∏n−1
i=0 x̃2i+1. We let F ′

1 =
∏n−1

i=0 x̃
′
2i be the first invariant of

T3(P ). Equation (27) gives us

F ′
1 = F1 ·

n−1∏
i=0

(1− x̃2i−1x̃2i−4)(1− x̃2i+1)

(1− x̃2i+1x̃2i−2)(1− x̃2i−1)

= F1 ·
∏n−2

i=−1(1− x̃2i+1x̃2i−2)∏n−1
i=0 (1− x̃2i+1x̃2i−2)

·
∏n

i=1(1− x̃2i−1)∏n−1
i=0 (1− x̃2i−1)

= F1.

This shows F ′
1 = F1. The proof for F2 goes through the same computation, so we omit it.

Finally, observe that F4 = F2F3

F1
, so by invariance of F1,F2,F3, we know that F4 must

also be invariant. This concludes the proof.

Remark 6.2. As shown in the proof of Proposition 6.1, F1 and F2 correspond to the product
of conjugated corner invariants. F3 is the ratio of the two Casimirs On

En
of the T2 invariant

Poisson structure on Pn. For discussions on F3 and the Casimirs, see [Sch24a, §2.3]. Also,
since F1F4 = F2F3, the four T3 invariants are not algebraically independent.

Below is a direct consequence of the invariance of the Fi’s. Since the Fi’s are preserved
by the forward action, it must also be preserved by the backward action.

Corollary 6.3. The four invariants F1,F2,F3,F4 are also invariant under T−1
3 .

6.2 Proof of Theorem 1.3

Recall that a subset A of a topological space X is precompact if the closure of A is compact.
To show that the T3-orbit is precompact, it suffices to show that the corner invariants of the
orbit are uniformly bounded away from the singularities 0, 1,∞.
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In this section, we let [n] := {1, . . . , n}. Given [P ] ∈ Pn, for all j,m ∈ Z, let xj,m =
xj(T

m
3 (P )) whenever Tm

3 (P ) exists. Let Fi,m = Fi(T
m
3 (P )) for i = 1, 2, 3, 4. By Propo-

sition 6.1, Fi,m is independent of m. All sequences are indexed by Z≥0 unless specified
otherwise. Finally, when we say “{am} converges/diverges on a subsequence, and {bm} con-
verges/diverges on the same subsequence,” we mean that a subsequence of {bm} with the
same choice of indices as the subsequence of {am} converges/diverges.

Lemma 6.4. Given [P ] ∈ Sn(J, I), there exist a, b ∈ J such that x2i,m ∈ [a, b] for all i ∈ [n]
and m ∈ Z≥0.

Proof. We first claim that for each i, the sequence {x2i,m} is bounded above uniformly by
some bi ∈ J . If not, then x2i,m → 1 on a subsequence, which implies 1 − x2i,m → 0 on the
same subsequence. Since [Tm

3 (P )] ∈ Sn(J, I) for all m ∈ Z≥0, we must have 1 − x2j,m ∈
(0, 1) and (1 − x2j+1,m)

−1 ∈ (0, 1) for all j ∈ [n]. This implies F4,m → 0 on the same
subsequence, but that contradicts invariance of F4,m. Therefore, {x2i,m} is bounded above
by bi = supm{x2i,m} ∈ J . Taking b = maxi∈[n] bi satisfies the condition in the lemma.

Next, we show {x2i,m} is bounded below uniformly by some ai > 0. If not, then x2i,m → 0
on a subsequence, so x2i,m · (x2i,m − 1)−1 → 0 on the same subsequence. From the argument
above, x2j,m ≤ b for allm ∈ Z≥0 and j ∈ [n], which gives us |x2j,m·(x2j,m−1)−1| ≤ | b

b−1
|, so the

sequences are uniformly bounded for all j ̸= i. This together with |x2i,m ·(x2i,m−1)−1| → 0 on
a subsequence implies |F1,m| → 0 on the same subsequence, but that contradicts invariance
of F1,m. Therefore, {x2i,m} is bounded below by ai = infm{x2i,m} ∈ J . Taking a = mini∈[n] ai
completes the proof.

Lemma 6.5. With the same notation as in Lemma 6.6, there exist c, d ∈ I such that
x2i+1,m ∈ [c, d] for all i ∈ [n] and m ∈ Z≥0.

Proof. We first claim that for each i,the sequence {x2i+1,m} is bounded above uniformly
by some di ∈ I. If not, then, x2i+1,m · (x2i+1,m − 1)−1 → 0 on a subsequence. Since
x2j+1,m · (x2j+1,m − 1)−1 ∈ (0, 1) for all j ∈ [n], we must have F2,m → 0 on the same
subsequence, but that contradicts invariance of F2,m.

Next, we show that {x2i+1,m} is bounded below uniformly by some ci ∈ I. If not, then a
subsequence of {x2i+1,m}must diverge, so the same subsequence of {1−x2i+1,m} also diverges.
Lemma 6.4 and x2i+1,m ≤ di < 0 together implies F4,m diverges on the same subsequence,
but that contradicts invariance of F4,m. Finally, taking c = mini∈[n] ci and d = maxi∈[n] di
completes the proof.

The proofs of the following two lemmas are analogous to Lemma 6.4 and 6.5. We will
omit the details and point out which invariants to use in each step.

Lemma 6.6. Given [P ] ∈ Sn(K, J), there exist a, b ∈ J such that x2i+1,m ∈ [a, b] for all
i ∈ [n] and m ∈ Z≥0.

Proof. For each i, the sequence {x2i+1,m} is bounded below by some ai ∈ J , for otherwise
F3,m diverges on a subsequence. Next, since {|F3,m|} is bounded below by

∏n−1
j=0 aj > 0,
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{x2i+1,m} is bounded above by some bi ∈ J . Taking a = mini∈[n] ai and b = maxi∈[n] bi
completes the proof.

Lemma 6.7. With the same notation as in Lemma 6.6, there exist c, d ∈ K such that
x2i,m ∈ [c, d] for all i ∈ [n] and m ∈ Z≥0.

Proof. For each i, the sequence {x2i,m}must be bounded below by some ci ∈ K, for otherwise
F1,m → ∞ on a subsequence. It’s also bounded above by some di. To see this, Lemma 6.6
implies all corner invariants are bounded away from 0, so if {x2i,m} is not bounded above,
then F3,m diverges on a subsequence. Taking c = mini ci and d = maxi di completes the
proof.

Proof of Theorem 1.3. We will show that the forward T3 orbit of [P ] ∈ Sα
3,n = Sn(J, I) has

uniformly bounded corner invariants. By Proposition 4.10, [P ] ∈ Sn(J, I). Let [a, b] ⊂
J , [c, d] ⊂ I be compact intervals derived from Lemma 6.4 and 6.5. Then, the sequence
{(x0,m, . . . , x2n−1,m)} is contained in

∏n−1
i=0 [a, b]× [c, d], so it is uniformly bounded. To show

precompactness of the backward T3 orbit of Sα
3,n, one can adapt the proofs of Lemma 6.4

and 6.5 with very few changes. We omit the details. The case Sβ
3,n follows from Lemma 6.6

and 6.7 by essentially the same argument, which we again omit.

7 Type-β 2-Spirals and Precompact T2 Orbits

7.1 The Corner Invariants of Type-β 2-Spirals

We finish this paper by discussing the type-β 2-spirals. Proposition 3.10 implies Sβ
2,n is

disjoint from the moduli space of closed convex polygons, so Sβ
2,n is a new invariant geometric

construction under the pentagram map by Theorem 1.1. In this section, we analyze the
corner invariants of Sβ

2,n and show that just like the type-α and type-β 3-spirals, it is cut out
by linear boundaries.

Proposition 7.1. For all n ≥ 2, given any [P ] ∈ Sβ
2,n with corner invariants xj = xj(P ),

we have x2i > 0 and x2i+1 < 0 for all i ∈ [n].

Proof. Let P be a (i−2)-representative of [P ]. Normalize by Aff+
2 (R) so that Pi−1 = (−1, 0),

Pi = (0, 0), Pi+1 = (0, 1) on the affine patch, which is possible because (Pi−1, Pi, Pi+1) is
positive. Let sa,b ∈ R ∪ {∞} denote the slope of Pi+aPi+b. Positivity of (Pi−2, Pi−1, Pi)
and Pi+1 ∈ int(Pi−2, Pi−1, Pi) implies s−1,−2 > 1 and s1,−2 > 1. Similarly, since Pi+2 ∈
int(Pi−1, Pi, Pi+1), we have s−1,2 ∈ (0, 1) and s1,2 > 1. It follows that

x2i =
(s1,−2 − s1,−1)(s1,0 − s1,2)

(s1,−2 − s1,0)(s1,−1 − s1,2)
= −s1,−2 − 1

1− s1,2
> 0;

x2i+1 =
(s−1,2 − s−1,1)(s−1,0 − s−1,−2)

(s−1,2 − s−1,0)(s−1,1 − s−1,−2)
=

−s−1,−2(s−1,2 − 1)

s−1,2(1− s−1,−2)
< 0.

(34)

This concludes the proof.
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Figure 24: Configuration of Proposition 7.1 and 7.2.

Proposition 7.2. For all n ≥ 2, if [P ] ∈ Pn has corner invariants xj = xj(P ) such that

x2i > 0 and x2i+1 < 0 for all i ∈ [n], then [P ] ∈ Sβ
2,n.

Proof. Fixing N ∈ Z. Let P be a representative of [P ] such that PN−2 = (1, 4), PN−1 =
(−1, 0), PN = (0, 0), and PN+1 = (0, 1). We say P satisfies condition (∗∗)i if (Pi−1, Pi, Pi+1)
is positive and Pi+2 ∈ int(Pi−1, Pi, Pi+1). Then, P is a type-β N -representative of 2-spirals
iff P satisfies (∗∗)i for all i > N . Notice that P satisfies (∗∗)N , so by an induction argument,
it suffices to show that for i ≥ N , if P satisfies (∗∗)i, then P satisfies (∗∗)i+1.

If P satisfies (∗∗)i, then (Pi−1, Pi, Pi+1) is positive. Normalize by Aff+
2 (R) so that Pi−1 =

(−1, 0), Pi = (0, 0), and Pi = (0, 1). We will use the same notation la,b and sa,b as Proposition
7.1. Since Pi+1 ∈ int(Pi−2, Pi−1, Pi), we have s−1,−2 > 1 and s1,−2 > 1. Then, since x2i > 0
and x2i+1 < 0, Equation (34) gives us

s1,−2 − 1

s1,2 − 1
> 0 and

s−1,−2(s−1,2 − 1)

s−1,2(s−1,−2 − 1)
< 0.

It follows that s1,2 > 1 and 1 − 1
s−1,2

< 0. The latter inequality implies 1
s−1,2

> 1, so in

particular s−1,2 > 0 and hence s−1,2 ∈ (0, 1). The two conditions s1,2 > 1 and s−1,2 ∈ (0, 1)
implies Pi+2 ∈ int(Pi−1, Pi, Pi+1) and (Pi, Pi+1, Pi+2) positive, so P satisfies (∗∗)i+1 as desired.
We conclude that [P ] ∈ Sβ

2,n.

7.2 The Precompactness of T2 Orbits

We adapt the argument for Theorem 1.3 to give a quick proof of Theorem 1.4 using the
Casimir functions of the T2-invariant Poisson structure on Pn that were developed in [Sch08,
Theorem 1.2]. One can find the proof of the following lemma in [Sch08, §2.2].

Lemma 7.3. For the map T2 acting on a twisted n-gon P with corner invariants xj = xj(P ),
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one has the following four invariant quantities.

O1(P ) =
n−1∑
i=0

(−x2i+1 + x2i−1x2ix2i+1); On(P ) =
n−1∏
i=0

x2i+1;

E1(P ) =
n−1∑
i=0

(−x2i + x2i−2x2i−1x2i); En(P ) =
n∏

i=1

x2i.

We continue to use the notations from §6.2. In addition, we write O1,m = O1(T
m
2 (P )). We

define On,m, E1,m, and En,m analogously. By Lemma 7.3, the values of these four quantities
are independent of the choice of m.

Lemma 7.4. For all n ≥ 2, given [P ] ∈ Sβ
2,n, there exists a, b > 0 such that x2i,m ∈ [a, b] for

all i ∈ [n] and m ∈ Z≥0.

Proof. Fix i ∈ [n]. We first show that x2i,m is uniformly bounded above by some b > 0. Since

Tm
2 (P ) ∈ Sβ

2,n for all m ∈ Z≥0, we must have E1,m < −x2i,m < 0. Then, if x2i,m → ∞ on a
subsequence, E1,m also diverges on the same subsequence, but that contradicts invariance of
E1,m. This implies x2i,m < bi for some bi > 0. Taking b = maxi∈[n] bi satisfies the condition
in the lemma.

Next, we show that x2i,m is uniformly bounded below by some a > 0. We first notice
that En,m < bni . This implies if x2i,m → 0 on a subsequence, then En,m → 0 on the same
subsequence, but that contradicts invariance of En,m. Therefore, x2i,m > ai for some ai > 0.
Taking a = mini∈[n] ai completes the proof.

Lemma 7.5. For all n ≥ 2, given [P ] ∈ Sβ
2,n, there exists c, d < 0 such that x2i+1,m ∈ [c, d]

for all i ∈ [n] and m ∈ Z≥0.

Proof. The argument is analogous to the proof of Lemma 7.4. Fix i ∈ [n]. To find ci that
bounds {x2i+1,m} uniformly from below, we use the fact that O1,m > −x2i+1 > 0. We then
set c = mini∈[n] ci. To find di that bounds {x2i+1,m} uniformly from above, we use the fact
that |On(P )| < |cn|. We then set d = maxi∈[n] di to complete the proof.

Lemma 7.4 and 7.5 together implies that the forward T2-orbit of any [P ] ∈ Sβ
2,n is pre-

compact in Pn. One can use the same argument to show that the backward T2-orbit is also
precompact. We have thus completed the proof of Theorem 1.4.

8 Appendix

8.1 Conjectures for Invariants

Given [P ] ∈ Pk,n, we may consider the following quantity:

yk,i(P ) = −χ(Pi, PiPi+k ∩ Pi−1Pi+k−1, PiPi+k ∩ Pi+1Pi+k+1, Pi+k).
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Observe that yk,i(P ) is a y-variable of the Y -pin S = {(0, 0), (k, 0), (−1, 1), (0, 1)}, which
corresponds to the map Tk labeled by Equation (1). The proof is essentially the same as the
one for Proposition 5.11, so we omit it.

Conjecture 8.1. For all k, n ≥ 2, given [P ] ∈ Pk,n, we have

n∏
i=1

yk,i(P ) =
n∏

i=1

yk,i(Tk(P )). (35)

We prove Conjecture 8.1 for k = 2 and k = 3. Let xj = xj(P ) be the corner invariants
of [P ]. The case k = 2 follows from the fact that y2,i(P ) = −x2i+1x2i+2 ([Gli11, Equation
(2.2)]), so

n∏
i=1

y2,i(P ) = (−1)n
n∏

i=1

x2i+1x2i+2 = (−1)nOn(P )En(P ),

which is T2-invariant by Lemma 7.3.

For the case k = 3, Equation (31) implies

n∏
i=1

y3,i(P ) = (−1)n
n∏

i=1

x2ix2i+3

(x2i − 1)(x2i+3 − 1)
= (−1)nF1(P )F2(P ),

which is T3-invariant by Proposition 6.1.
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